Mar. 19 Math 2254H sec 015H Spring 2015

Section 11.2: Series

Observation: The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, but the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is convergent.

Both series share the property that the $n^{\text {th }}$ term goes to zero. That is, both

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

Theorem: (a test for divergence)

Theorem: If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Caution: The converse is NOT true!

Theorem: (The Divergence Test) ${ }^{1}$ If

$$
\lim _{n \rightarrow \infty} a_{n} \text { does not exists, or } \quad \lim _{n \rightarrow \infty} a_{n} \neq 0,
$$

then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
${ }^{1}$ The Divergence Test is also known as the $\mathbf{n}^{\text {th }}$ Term Test.

Example:
If possible, determine if the series is convergent or divergent. If it is not possible to determine if the series converges, explain why.
(a) $\sum_{n=1}^{\infty} \frac{2 n}{n+3}$ Divergence test $a_{n}=\frac{2 n}{n+3}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{2 n}{n+3}=\lim _{n \rightarrow \infty} \frac{2 n}{n+3} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2}{1+\frac{3}{n}}=\frac{2}{1+0}=2 \neq 0
\end{aligned}
$$

The seines diverges by the divergence test.

Examples continued...
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad$ Divagince test: $\quad a_{n}=\frac{1}{n^{2}}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

The test fails.
No conchsion con be reached w) present "tests."

Examples continued...
(c) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$ Divergence test $a_{n}=\left(1+\frac{1}{n}\right)^{n}$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \quad \neq 0
$$

The series is divergent.

Theorem: Some Properties of Convergent Series

Theorem: Suppose $\sum a_{n}$ and $\sum b_{n}$ are convergent series with sums α and β, respectively. Then the series

$$
\sum\left(a_{k}+b_{k}\right), \quad \sum\left(a_{k}-b_{k}\right), \quad \text { and } \quad \sum c a_{k} \text { for constant } c
$$

are convergent with sums

$$
\begin{gathered}
\sum\left(a_{k}+b_{k}\right)=\alpha+\beta, \quad \sum\left(a_{k}-b_{k}\right)=\alpha-\beta \\
\text { and } \sum c a_{k}=c \alpha
\end{gathered}
$$

Example
Find the sum of the series

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{4}{n(n+1)}+\frac{2}{5^{n-1}}\right)=4+\frac{5}{2}=\frac{8+5}{2}=\frac{13}{2} \\
& \sum_{n=1}^{\infty} \frac{4}{n(n+1)}=4 \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=4 \cdot 1=4 \\
& \sum_{n=1}^{\infty} \frac{2}{5^{n-1}}=\sum_{n=1}^{\infty} 2\left(\frac{1}{5}\right)^{n-1}=\frac{2}{1-\frac{1}{5}} \cdot \frac{5}{5}=\frac{10}{4}=\frac{5}{2}
\end{aligned}
$$

geometric

$$
a=2
$$

Section 11.3: The Integral Test

Recall: Integrals were defined in terms of sums-Riemann Sums-and there is a geometric way, relating to area between curves, to interpret them.

Note: A series can be related to areas too

$$
a_{1}+a_{2}+\cdots=a_{1} \cdot 1+a_{2} \cdot 1+\cdots
$$

if the numbers a_{k} are heights and all the widths are 1 . Of course, this makes best sense when the numbers a_{k} are positive.

Context for this Section: We will restrict our attention for the moment to series of nonnegative terms.

Relating an Integral to a Series (divergent)

Relating an Integral to a Series (convergent)

Figure: Comparison of areas related to $\int_{1}^{\infty} \frac{d x}{x^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Set Up for the Integral Test

Question: Does the series of positive terms $\sum_{n=1}^{\infty} a_{n}$ converge or diverge?

- Suppose f is a continuous, positive, decreasing function defined on the interval $[1, \infty)$.
- Also suppose that $a_{n}=f(n)$-the function and the terms in the series have the same "formula".
- Assume that we are able to determine if the integral $\int_{1}^{\infty} f(x) d x$ converges or diverges.

Geometric Interpretation of the Integral Test

Figure: The possible value of the series can be trapped between the possible values of integrals.

The Integral Test

Theorem: Let $\sum a_{n}$ be a series of positive terms and let the function f defined on $[1, \infty)$ be continuous, positive and decreasing with

$$
a_{n}=f(n)
$$

(i) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(ii) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Both series and integral converge, or both series and integral diverge.

Examples:
Determine the convergence or divergence of the series.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1} \quad$ Integral test: Lat $f(x)=\frac{1}{x^{2}+1}$ f is positive, continuous and decreasing.

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d x & =\int_{1}^{\infty} \frac{d x}{x^{2}+1}=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{d x}{x^{2}+1} \\
& =\left.\lim _{t \rightarrow \infty} \tan ^{-1} x\right|_{1} ^{t}
\end{aligned}
$$

$$
=\lim _{t \rightarrow \infty}\left(\tan ^{-1} t-\tan ^{-1} 1\right)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
$$

The integral converges.
The series must also converge.

Examples:
Integrd test : $f(x)=\frac{\ln x}{x}, x \geqslant 1$
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n} \quad f$ is continuous, positive for $x>1$,

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-1 \cdot \ln x}{x^{2}}=\frac{1-\ln x}{x^{2}} \\
& f^{\prime}(x)<0 \text { if } 1-\ln x<0 \Rightarrow 1<\ln x
\end{aligned}
$$

for $x>e$
weill consider $\sum_{n=3}^{\infty} \frac{\ln n}{n}$
for $x \geqslant 3$, fir continuous, positive, decreasing.

$$
\begin{aligned}
& u=\ln x \\
& \int u d u=\frac{u^{2}}{2}+C \\
& \int_{3}^{\infty} \frac{\ln x}{x} d x=\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{\ln x}{x} d x \\
& =\left.\lim _{t \rightarrow \infty} \frac{1}{2}(\ln x)^{2}\right|_{3} ^{t} \\
& =\lim _{t \rightarrow \infty}\left[\frac{1}{2}(\ln t)^{2}-\frac{1}{2}(\ln 3)^{2}\right]=\infty
\end{aligned}
$$

The integral divengs, so $\sum_{n=3}^{\infty} \frac{\ln n}{n}$ diverges.
Hence the origind series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ diverges.

Special Series: p-series
Determine the values of p for which the series converges. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{p}} d x \quad \text { converges if } p>1 \\
& \text { and } \\
& \text { diverge if } p \leq 1
\end{aligned}
$$

For the integral test, $f(x)=\frac{1}{x^{p}}$ is positive, continuous, decreasing for $p>0$.

So by the integred test, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ convages if $p>1$ and divages if $p \leq 1$.

