March 1 Math 2306 sec. 57 Spring 2018

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

Constant coot, left Pobnomid right
Here $g(x)=8 x+1$, a $1^{\text {st }}$ degree pulynumied.
weill "guess" that y_{p} is also a $1^{\text {st }}$ degree polsnomid.
Suppose $y_{p}=A x+B$ for some constants A, B.
This is supposed to sola the ODE. So substitute

$$
y_{p}^{\prime}=A, \quad y_{p}^{\prime \prime}=0
$$

Need

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1 \\
& 0-4(A)+4(A x+B)=8 x+1
\end{aligned}
$$

Collect $\quad 4 A x+(-4 A+4 B)=8 x+1$

Match coefficients

$$
\left.\begin{array}{c}
4 A=8 \\
-4 A+4 B=1
\end{array}\right\} \Rightarrow \begin{aligned}
& A=2 \\
& B=\frac{1}{4}(1+4 A)=\frac{1}{4}(1+8)=\frac{9}{4}
\end{aligned}
$$

So the particular solution

$$
y_{p}=2 x+\frac{9}{4}
$$

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

Constant coefficient lift. Exponential right.

$$
g(x)=6 e^{-3 x} \quad \text { a constant times } e^{-3 x}
$$

Guess $y_{p}=A e^{-3 x}$ for some constant A.
Substitute $y_{p}{ }^{\prime}=-3 A e^{-3 x}, \quad y_{p}{ }^{\prime \prime}=9 A e^{-3 x}$

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{-3 x} \\
& 9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4 A e^{-3 x}=6 e^{-3 x}
\end{aligned} \int \begin{aligned}
& 25 A e^{-3 x}=6 e^{-3 x} \\
& A=\frac{6}{25}
\end{aligned}
$$

$$
\Rightarrow y_{p}=\frac{6}{25} e^{-3 x}
$$

Make the form general

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

Suppose we look © $g(x)=16 x^{2}$ and see "a constant times x^{2}." Let's try $y_{p}=A x^{2}$. Substitute

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x, \quad y_{p}^{\prime \prime}=2 A . \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2} \\
& 4 A x^{2}-8 A x+2 A=16 x^{2}
\end{aligned}
$$

Matching coefficients

$$
\left.\begin{array}{r}
4 A=16 \\
-8 A=0
\end{array}\right\} \Rightarrow \quad A=4 \underset{\substack{\text { not possible }}}{\text { and }}
$$

y_{p} cant look like $A x^{2}$.
we need to consitan $g(x)=16 x^{2}$ as a $2^{\text {nd }}$ degree polynanid nd guess

$$
\begin{aligned}
& y_{p}=A x^{2}+B x+C \quad A, B, C \text { constants } \\
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2}
\end{aligned}
$$

February 22, $2018 \quad 7 / 33$

$$
\begin{aligned}
& 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2}+0 x+0 \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0 \\
& 4 A=16 \Rightarrow A=4 \\
& -8 A+4 B=0 \Rightarrow B=\frac{8}{4} A=2 A=8 \\
& 2 A-4 B+4 C=0 \Rightarrow C=\frac{4}{4} B-\frac{2}{4} A=8-\frac{1}{2}(4)=6
\end{aligned}
$$

So

$$
y_{p}=4 x^{2}+8 x+6
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If we assume that $y_{p}=A \sin (2 x)$, taking two derivatives would lead to the equation

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
$$

This would require (matching coefficients of sines and cosines)

$$
-4 A=20 \text { and } \quad-2 A=0
$$

This is impossible as it would require $-5=0$!

General Form: sines and cosines

We must think of our equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$ as

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

The correct format for y_{p} is

$$
y_{p}=A \sin (2 x)+B \cos (2 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(a) $g(x)=1$ (or really any non constant)

$$
y_{p}=A \quad \text { also. a constant }
$$

(b) $g(x)=x-7 \quad 1^{\text {st }}$ degree poly.

$$
y_{p}=A x+B
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(c) $g(x)=5 x^{2} \quad \partial^{n d}$ degree poly

$$
y_{p}=A x^{2}+B x+C
$$

(d) $g(x)=3 x^{3}-5 \quad 3^{\text {rd }}$ degree poly

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(e) $g(x)=x e^{3 x} \quad 1^{\text {st }}$ degenp.1, thes $e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x}=A x e^{3 x}+B e^{3 x}
$$

(f) $g(x)=\cos (7 x) \quad$ Liveer conbination of $\cos (7 x)$ and $\sin (7 x)$

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(g) $g(x)=\sin (2 x)-\cos (4 x)$ Linear conto of $\sin (2 x)$ and $\cos (2 x)$ and $\sin (4 x)$ and $\cos (4 x)$

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \cos (4 x)+D \sin (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x) \quad 2^{n d}$ degree poly times $\sin (3 x)$ and $2^{\text {nd }}$ degree poly times $\cos (3 x)$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(i) $g(x)=e^{x} \cos (2 x) \quad e^{x} \cos (2 x)$ and $e^{x} \sin (2 x)$

$$
y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)
$$

(j) $g(x)=x e^{-x} \sin (\pi x) \quad 1^{\text {st }}$ degree poly times e^{-x} times sine and cosine of πx.

$$
y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

The Superposition Principle
Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

Superposition tells us we can write $y_{p}=y_{p}+y_{p_{2}}$
where yep, solves

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x} \quad y_{p_{1}}=A e^{-3 x}
$$

and $y_{p_{2}}$ solver

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2} \quad y_{p_{2}}=B x^{2}+C x+D
$$

So

$$
y_{p}=A e^{-3 x}+B x^{2}+C x+1
$$

we found Wore that $y_{p_{1}}=\frac{6}{25} e^{-3 x}$ and

$$
y_{p_{2}}=4 x^{2}+8 x+6
$$

So

$$
y_{p}=\frac{6}{25} e^{-3 x}+4 x^{2}+8 x+6
$$

A Glitch!

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=3 e^{x} \\
& \text { Constant clef. exporecticl } \\
& g(x)=3 e^{x} \text {, guess } y_{p}=A e^{x} \\
& \text { Substitute } y_{p}{ }^{\prime}=A e^{x} \text { and } y_{p}{ }^{\prime \prime}=A e^{x} \\
& y_{p}{ }^{\prime \prime}-y_{p}{ }^{\prime}=A e^{x}-A e^{x}=3 e^{x} \\
& 0=3 e^{x} \\
& 0=3 ? \text { ? }
\end{aligned}
$$

Ip cant have the form $A e^{x}$.

Consiben the associated honogereous eguation

$$
y^{\prime \prime}-y^{\prime}=0
$$

Choraderistec eqn $\quad m^{2}-m=0 \quad m=0$

$$
m(m-1)=0 \Rightarrow \quad \text { or } \quad m=1
$$

$$
y_{1}=e^{0 x}=1, y_{2}=e^{1 x}=e^{x}
$$

$g(x)$ and our suess @ y_{p} an pant of Y_{c}. well reed a ways to modity our quess © Yp.

We'll consider cases

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminates the duplication.

