March 1 Math 2306 sec. 57 Spring 2018

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous
equations

any" +an 1y 4+ apy = g(x)
where g comes from the restricted classes of functions
» polynomials,
» exponentials,
» sines and/or cosines,
» and products and sums of the above kinds of functions

Recall y = yc + yp, so we'll have to find both the complementary and
the particular solutions!
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Motivating Example
Find a particular solution of the ODE
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The Method: Assume y, has the same form as g(x)
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Make the form general

y" -4y + 4y = 16x°
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oA - 4(2PxrB) + 4 (A ¢BxrC) = (6w 0x +O
YA + (-8A+4BD X+ (ZA-HB+VC)= lox? + Ox +9
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General Form: sines and cosines

y" —y' = 20sin(2x)

If we assume that y, = Asin(2x), taking two derivatives would lead to
the equation

—4Asin(2x) — 2Acos(2x) = 20sin(2x).
This would require (matching coefficients of sines and cosines)

—4A=20 and —-2A=0.

This is impossible as it would require —5 = 0!
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General Form: sines and cosines

We must think of our equation y” — y’ = 20 sin(2x) as

y" —y' = 20sin(2x) + 0 cos(2x).

The correct format for y, is

¥p = Asin(2x) + Bcos(2x).
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Examples of Forms of y, based on g (Trial Guesses)

M"”m
(@) g(x) =1 (or really any ,gonstant)

[N Cow 5\"‘"’*

0 A el

B)gxX)=x—7 | Jegrer o\

Qe Ax+ B

February 22, 2018

11/33



Examples of Forms of y, based on g (Trial Guesses)
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Examples of Forms of y, based on g (Trial Guesses)
3x
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Examples of Forms of y, based on g (Trial Guesses)

L‘v\n.ar [FY.Y Sun(zx) w3 Cos (Zx)

(9) 9(x) = sin(2x) — cos(4x) S (uy)y ad s (M%)

a»\é

Ye* AS.m(204BCor2x) + C Cos (30 + D Sin(x) |

(h) g(X) = X2 Sin(SX) QV\é A@N Pg\.’ '\"Mj §\V\(’!x) a,“;

Z“é degree ‘n\j Maws C.I(?x)
gp = (A4 Ber S )+ (Dxw ExeF) Gs(3x)
¢

February 22, 2018 14/33



Examples of Forms of y, based on g (Trial Guesses)
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The Superposition Principle
Example: Determine the correct form of the particular solution using
the method of undetermined coefficients for the ODE
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A Gilitch!
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We'll consider cases

Using superposition as needed, begin with assumption:
Yo =Ypoy T+ Vo

where y,, has the same general form as g;(x).

Case I: y, as first written has no part that duplicates the
complementary solution y.. Then this first form will suffice.

Case ll: y,, has a term yp, that duplicates a term in the complementary
solution y.. Multiply that term by x”, where n is the smallest positive
integer that eliminates the duplication.
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