March 1 Math 2306 sec 58 Spring 2016

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

We seek solutions of the form $y=e^{m x}$ for constant m, and obtain the characteristic (a.k.a. auxiliary) equation

$$
a m^{2}+b m+c=0 .
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Note that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ form a fundamental solution set.

Example
Find the general solution of the ODE

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

Characteristic equation:

$$
\begin{aligned}
& m^{2}-2 m-2=0 \\
m & =\frac{2 \pm \sqrt{2^{2}-1 \cdot 4(-2)}}{2}=\frac{2 \pm \sqrt{12}}{2}=\frac{2 \pm 2 \sqrt{3}}{2} \\
& =1 \pm \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& m_{1}=1+\sqrt{3}, m_{2}=1-\sqrt{3} \text { so } \\
& y_{1}=e^{(1+\sqrt{3}) x}, y_{2}=e^{(1-\sqrt{3}) x}
\end{aligned}
$$

The genera solution is

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

Characteristic eqn: $\quad m^{2}+m-12=0$
factor $(m+4)(m-3)=0$

$$
m_{1}=-4, \quad m_{2}=3
$$

$$
y_{1}=e^{-4 x}, y_{2}=e^{3 x}
$$

The gevend solution is $y=c_{1} e^{-4 x}+c_{2} e^{3 x}$

Apply $y(0)=1, y^{\prime}(0)=10$

$$
\left.\begin{array}{ll}
y=c_{1} e^{-4 x}+c_{2} e^{3 x} & y(0)=c_{1} e^{0}+c_{2} e^{0}=1 \\
y^{\prime}=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x} & y^{\prime}(0)=-4 c_{1} e^{0}+3 c_{2} e^{0}=10 \\
c_{1}+c_{2}=1 \\
-4 c_{1}+3 c_{2}=10
\end{array}\right\} \Rightarrow \quad \begin{aligned}
& 4 c_{1}+4 c_{2}=4 \\
& \frac{-4 c_{1}+3 c_{2}=10}{7 c_{2}=14} \Rightarrow c_{2}=2 \\
& c_{1}+c_{2}=1 \Rightarrow \quad c_{1}=1-c_{2}=1-2=-1
\end{aligned}
$$

The solution to the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$.
standerd form $y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0$

$$
\begin{gathered}
P(x)=\frac{b}{a} \quad y_{2}=u(x) y_{1}(x) \quad \text { where } \\
u=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
\end{gathered}
$$

$$
\begin{aligned}
u & =\int \frac{e^{-\int \frac{b}{a} d x}}{\left(e^{-\frac{b}{2 a} x}\right)^{2}} d x=\int \frac{e^{-\frac{b}{a} x}}{e^{\frac{-2 b}{2 a} x}} d x \\
& =\int \frac{e^{-\frac{b}{a} x}}{e^{-\frac{b}{a} x}} d x=\int d x=x
\end{aligned}
$$

So $y_{2}=x e^{\frac{-b}{2 a} x}$

Example

Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Cheracturstic ign

$$
\begin{aligned}
& 4 m^{2}-4 m+1=0 \\
& (2 m-1)^{2}=0
\end{aligned}
$$

$m=\frac{1}{2}$ repeated root.
So $y_{1}=e^{\frac{1}{2} x}, y_{2}=x e^{\frac{1}{2} x}$

The genera solution is

$$
y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

Charachristic eqn. $\quad m^{2}+6 m+9=0$

$$
(m+3)^{2}=0
$$

$m=-3$, repeated root

$$
y_{1}=e^{-3 x}, y_{2}=x e^{-3 x}
$$

Gerard solution $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$

Apply $y(0)=4, y^{\prime}(0)=0$

$$
\begin{array}{rl}
y=c_{1} e^{-3 x}+c_{2} x e^{-3 x} & y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=4 \\
y^{\prime}=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x} & =4 \\
y^{\prime}(0)=-3 c_{1} e^{0}+c_{2} e^{\circ}-3 c_{2} \cdot 0 e^{0}=0 \\
-12+c_{2}=0 \Rightarrow c_{2}=12
\end{array}
$$

The solution t the IVP is

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
\begin{gathered}
e^{i \theta}=\cos \theta+i \sin \theta \\
Y_{1}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
Y_{2}=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
Y_{1}=e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
Y_{2}=e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Using the principle of super position
Set $y_{1}=\frac{1}{2} Y_{1}+\frac{1}{2} Y_{2}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(2 e^{\alpha x} \cos \beta x\right)=e^{\alpha x} \cos \beta x \\
y_{2} & =\frac{1}{2 i} Y_{1}-\frac{1}{2 i} Y_{2}=\frac{1}{2 i}\left(Y_{1}-Y_{2}\right) \\
& =\frac{1}{2 i}\left(2 i e^{\alpha x} \sin \beta x\right)=e^{\alpha x} \sin \beta x
\end{aligned}
$$

Our finderental solution set is

$$
\begin{aligned}
& y_{1}=e^{\alpha x} \cos \beta x \\
& y_{2}=e^{\alpha x} \sin \beta x
\end{aligned}
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Charactaistic egn. $\quad m^{2}+4 m+6=0$

$$
\begin{gathered}
m=\frac{-4 \pm \sqrt{4^{2}-1 \cdot 4 \cdot 6}}{2}=\frac{-4 \pm \sqrt{16-24}}{2}=\frac{-4 \pm \sqrt{-8}}{2} \\
=\frac{-4 \pm i 2 \sqrt{2}}{2}=-2 \pm i \sqrt{2} \quad \alpha \pm i \beta \\
\alpha=-2 \text { and } \beta=\sqrt{2}
\end{gathered}
$$

$$
x_{1}=e^{-2 t} \cos (\sqrt{2} t) \text { and } x_{2}=e^{-2 t} \sin (\sqrt{2} t)
$$

The genend solution is

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Example
Solve the IVP

$$
y^{\prime \prime}+4 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-5
$$

Characteristic equ.

$$
\begin{aligned}
& m^{2}+4=0 \\
& m^{2}=-4 \Rightarrow m= \pm \sqrt{-4}= \pm 2 i \\
& \alpha \pm i \beta
\end{aligned}
$$

$$
\begin{gathered}
\alpha=0 \text { and } \beta=2 \\
y_{1}=e^{o x} \cos (2 x)=\cos (2 x), y_{2}=e^{o x} \sin (2 x)=\sin (2 x)
\end{gathered}
$$

General solution is $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$
Apply $y(0)=3, y^{\prime}(0)=-5$

$$
\begin{aligned}
& y=c_{1} \cos (2 x)+c_{2} \sin (2 x), y(0)=c_{1} \cos 0+c_{2} \sin 0=3 \\
& y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x) c_{1}=3 \\
& y^{\prime}(0)=-2 c_{1} \sin 0+2 c_{2} \cos 0=-5 \\
& 2 c_{2}=-5 \Rightarrow c_{2}=\frac{-5}{2}
\end{aligned}
$$

The solution to the IV P is

$$
y=3 \cos (2 x)-\frac{5}{2} \sin (2 x)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Solve the ODE
Characthistic equation is

$$
y^{\prime \prime \prime}-4 y^{\prime}=0
$$

$3^{5} 52^{2}$

$$
m^{3}-4 m=0
$$

factor $m\left(m^{2}-4\right)=0$
Every find cental $m(m-2)(m+2)=0$
Solution set must hove 3 solutions.

$$
m_{1}=0, \quad m_{2}=2, \quad m_{3}=-2
$$

$$
y_{1}=e^{0 x}=1 \quad y_{2}=e^{2 x}, \quad y_{3}=e^{-2 x}
$$

The genera solution is

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
$$

Note $y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}$.

