March 1 Math 2306 sec 59 Spring 2016

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

We seek solutions of the form $y=e^{m x}$ for constant m, and obtain the characteristic (a.k.a. auxiliary) equation

$$
a m^{2}+b m+c=0 .
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I Two distinct real roots $m_{1} \neq m_{2}, y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$.

II One repeated real root $m_{1}=m_{2}=m, y_{1}=e^{m x}$ and $y_{2}=x e^{m x}$.

III Two complex conjugate roots $m_{1,2}=\alpha \pm i \beta, y_{1}=e^{\alpha x} \cos (\beta x)$ and $y_{2}=e^{\alpha x} \sin (\beta x)$.

Example
Solve the IVP

$$
y^{\prime \prime}+4 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-5
$$

Charactaistic eqn. $\quad m^{2}+4=0$

$$
\begin{aligned}
& m^{2}=-4 \\
& m= \pm \sqrt{-4}= \pm 2 i
\end{aligned} \quad \alpha=0
$$

$$
\begin{aligned}
& y_{1}=e^{o x} \cos (2 x)=\cos (2 x) \\
& y_{2}=e^{o x} \sin (2 x)=\sin (2 x)
\end{aligned}
$$

The gonna solution is $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$

Apply $y(0)=3, y^{\prime}(0)=-5$

$$
\begin{aligned}
& y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x) \\
& y(0)=c_{1} \cos 0+c_{2} \sin 0=3 \Rightarrow c_{1}=3 \\
& y^{\prime}(0)=-2 c_{1} \sin 0+2 c_{2} \cos 0=-5 \Rightarrow 2 c_{2}=-5, c_{2}=\frac{-5}{2}
\end{aligned}
$$

The solution to the $I V P$ is

$$
y=3 \cos (2 x)-\frac{5}{2} \sin (2 x)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example $3^{\text {rd }}$ order eau. Every fundomontel
Solve the ODE solution set must contain 3 functions.

$$
y^{\prime \prime \prime}-4 y^{\prime}=0
$$

Characteristic Eqn:

$$
\begin{array}{r}
\text { Charackistic } \mathrm{Egn}: \quad \begin{array}{r}
m-4 m \\
\text { factor } \quad m\left(m^{2}-4\right) \\
m(m-2)(m+2)
\end{array}=0 \\
m_{1}=0, m_{2}=2, m_{3}=-2 \\
y_{1}=e^{0 x}=1, y_{2}=e^{2 x}, y_{3}=e^{-2 x}
\end{array}
$$

Geneal solution $\quad y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}$

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
$$

Example
Solve the ODE

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Characteristic eqn.

$$
m^{3}-3 m^{2}+3 m-1=0
$$

This is a perfect cube

$$
(m-1)^{3}=0
$$

$m=1$ a triple root.

A fundementa solution set is

$$
y_{1}=e^{x}, y_{2}=x e^{x}, y_{3}=x^{2} e^{x}
$$

The genera solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

Example
Solve the ODE

$$
\frac{d^{4} y}{d x^{4}}+2 \frac{d^{2} y}{d x^{2}}+y=0
$$

$4^{\text {th }}$ order equation. A fundamental solution set will contain 4 solutions.

Characteristic eqn:
Side note

$$
m^{4}+2 m^{2}+1=0
$$

$$
\begin{gathered}
m^{2}+1=0 \\
m^{2}=-1 \\
m= \pm i
\end{gathered}
$$

$$
\begin{aligned}
& \left(m^{2}+1\right)^{2}=0 \\
& m= \pm i \text { each is root. } \\
& \alpha \pm i \beta \Rightarrow \alpha=0, \beta=1
\end{aligned}
$$

We get

$$
\begin{aligned}
& y_{1}=e^{0 x} \cos x=\cos x \\
& y_{2}=e^{o x} \sin x=\sin x \\
& y_{3}=x e^{o x} \cos x=x \cos x \\
& y_{4}=x e^{o x} \sin x=x \sin x
\end{aligned}
$$

The general solution is

$$
y=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

Let's guess that y_{p} is a line (rime the right hand side). A line has the form $y_{p}=A x+B \quad A, B$ constants See it this con solve the $O D E$.

$$
\begin{aligned}
& y_{p}=A x+B \\
& y_{p}^{\prime}=A \\
& y_{p}^{\prime \prime}=0
\end{aligned}
$$

Need

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1 \\
& 0-4 \cdot A+4(A x+B)=8 x+1 \\
& -4 A+4 A x+4 B=8 x+1 \\
& 4 A x+(4 B-4 A)=8 x+1
\end{aligned}
$$

This requires

$$
\begin{aligned}
& 4 A=8 \text { and } \\
& 4 B-4 A=1
\end{aligned}
$$

This holds if $\quad A=2$

$$
4 B=1+4 A=1+8 \Rightarrow B=\frac{9}{4}
$$

So $y_{p}=2 x+\frac{9}{4}$ is a particular solution.

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{3 x}
$$

To get derivatives to be constants times $e^{3 x}$, well guess that
$y_{p}=A e^{3 x}$ where A is constant.

$$
\begin{aligned}
& y_{p}=A e^{3 x} \\
& y_{p}^{\prime}=3 A e^{3 x} \\
& y_{p}^{\prime \prime}=9 A e^{3 x}
\end{aligned}
$$

we ned

$$
\begin{aligned}
& \text { we need } \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{3 x} \\
& 9 A e^{3 x}-4\left(3 A e^{3 x}\right)+4 A e^{3 x}=6 e^{3 x}
\end{aligned}
$$

$$
\begin{aligned}
(9-12+4) A e^{3 x} & =6 e^{3 x} \\
A e^{3 x} & =6 e^{3 x}
\end{aligned}
$$

This is true if $A=6$.
Hence $y_{p}=6 e^{3 x}$ is a particular solution.

Make the form general

Lets goes that $y_{p}=A x^{2}$

$$
\begin{array}{ll}
y_{p}=A x^{2} & \text { we need } \\
y_{p}^{\prime}=2 A x & y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
y_{p}^{\prime \prime}=2 A & 2 A-4(2 A x)+4 A x^{2}=16 x^{2} \\
& 4 A x^{2}-8 A x+2 A=16 x^{2}
\end{array}
$$

Matching require $4 A=16,-8 A=0$ and $2 A=0$
This requires $A=4$ AND $A=0$.
Both cant be true at the same time.

Let's consider $g(x)=16 x^{2}$ as a quadratic.
well guess that

$$
\begin{aligned}
& y_{p}=A x^{2}+B x+C \\
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

we require

$$
\begin{aligned}
& \text { require } \\
& \qquad y p{ }^{\prime \prime}-4 y p^{\prime}+4 y p=16 x^{2} \\
& 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
\end{aligned}
$$

Matching requires

$$
\begin{aligned}
4 A & =16 \Rightarrow A=4 \\
-8 A+4 B & =0 \\
2 A-4 B+4 C & =0
\end{aligned}
$$

$$
\begin{gathered}
4 B=8 A \Rightarrow B=2 A=2 \cdot 4=8 \\
4 C=-2 A+4 B=-2 \cdot 4+4 \cdot 8=-8+32=24 \\
C=6
\end{gathered}
$$

So $y_{p}=4 x^{2}+8 x+6$ is a particular Solution.

