March 1 Math 2335 sec 51 Spring 2016

Section 4.1: Polynomial Interpolation

Context: We consider a set of distinct data points $\{(x_i, y_i) | i = 0, ..., n\}$ that we wish to fit with a polynomial curve.

- ► For a set of n + 1 points, we can fit a polynomial $P_n(x)$ of degree at most n.
- ▶ We assume that the points are distinct in the sense that $x_i \neq x_j$ when $i \neq j$.
- We will have two formulations, a Lagrange formulation and a Newton divided difference formulation.

Lagrange Interpolation Formula

Suppose we have n+1 distinct points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$. We define the n+1 Lagrange interpolation basis functions L_0, L_1, \dots, L_n by

$$L_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$
for $i = 0, \dots, n$.

Compactly:
$$L_i(x) = \prod_{k=0}^n \left(\frac{x - x_k}{x_i - x_k}\right), \quad i = 0, \dots, n$$

Lagrange's Formula The unique polynomial of degree $\leq n$ passing through these n+1 points is

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \cdots + y_n L_n(x).$$

Newton Divided Differences

Definition: Let f be a function whose domain contains the two distinct numbers x_0 and x_1 . We define the *first-order divided difference* of f(x) by

$$f[x_0,x_1]=\frac{f(x_1)-f(x_0)}{x_1-x_0}.$$

Notation: We'll use the square brackets "[]" with commas between the numbers to denote the divided difference.

Higher Order Divided Differences

Suppose we start with three distinct values x_0 , x_1 , x_2 in our domain. We can compute two first order divided differences

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 and $f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$.

Definition: The *second-order divided difference* of f(x) at the points x_0, x_1 , and x_2 is

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}.$$

Higher Order Divided Differences

Let x_0, x_1, \dots, x_n be distinct numbers in the domain of the function f.

Definition: The *third-order divided difference* of f(x) at the points x_0, x_1, x_2 , and x_3 is

$$f[x_0,x_1,x_2,x_3] = \frac{f[x_1,x_2,x_3] - f[x_0,x_1,x_2]}{x_3 - x_0}.$$

Definition: The n^{th} -order divided difference of f(x) at the points x_0, \ldots, x_n is

$$f[x_0,\ldots,x_n]=\frac{f[x_1,\ldots,x_n]-f[x_0,\ldots,x_{n-1}]}{x_n-x_0}.$$

Properties of Newton Divided Differences

Symmetry: Let $\{x_{i_0}, x_{i_1}, \dots, x_{i_n}\}$ be any permutation (rearrangement) of the numbers $\{x_0, x_1, \dots, x_n\}$. Then

$$f[x_{i_0}, x_{i_1}, \ldots, x_{i_n}] = f[x_0, x_1, \ldots, x_n].$$

(That is, the order of the *x*-values doesn't affect the value of the divided difference!)

Properties of Newton Divided Differences

Relation to Derivatives:

Theorem: Suppose f is n times continuously differentiable on an interval $\alpha \le x \le \beta$, and that x_0, \ldots, x_n are distinct numbers in this interval. Then

$$f[x_0, x_1, \ldots, x_n] = \frac{1}{n!} f^{(n)}(c)$$

for some number c between the smallest and the largest of the numbers x_0, \ldots, x_n .

For example,

$$f[x_0, x_1] = f'(c), \quad f[x_0, x_1, x_2] = \frac{1}{2!}f''(c), \quad f[x_0, x_1, x_2, x_3] = \frac{1}{3!}f'''(c)$$

where in each case, c is some number between the least and greatest of the x_i values.

Interpolating Polynomial: Newton Divided Difference

Suppose we have n + 1 distinct data points $(x_0, f(x_0))$, $(x_1, f(x_1)), \ldots, (x_n, f(x_n))$.

Linear Interpolation: The linear interpolating polynomial through $(x_0, f(x_0))$ and $(x_1, f(x_1))$ can be written as

$$P_1(x) = f(x_0) + (x - x_0)f[x_0, x_1].$$

Quadratic Interpolation: The quadratic interpolating polynomial through $(x_0, f(x_0))$, $(x_1, f(x_1))$, and $(x_2, f(x_2))$ can be written as

$$P_2(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$$

= $P_1(x) + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$

Interpolating Polynomial: Newton Divided Difference

Higher degree polynomials are defined recursively

Cubic Interpolation: The cubic interpolating polynomial through $(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)),$ and $(x_3, f(x_3))$ can be written as

$$P_3(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3]$$

$$= P_2(x) + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3]$$

Interpolating Polynomial: Newton Divided Difference Formula

 k^{th} **Degree Interpolation:** For $k \ge 2$, the polynomial of degree at most k through the points $(x_0, f(x_0)), \dots (x_k, f(x_k))$ is

$$P_k(x) = P_{k-1}(x) + (x - x_0)(x - x_1) \cdots (x - x_{k-1}) f[x_0, \dots, x_k]$$

Example

Consider the function f(x) = 1/(1+x) and let $x_0 = 0$, $x_1 = 1$ and $x_2 = 2$.

(a) Compute the divided differences $f[x_0, x_1]$ and $f[x_0, x_1, x_2]$.

$$f(x_{0}) = f(0) = \frac{1}{1+0} = 1, \quad f(x_{1}) = f(1) = \frac{1}{1+1} = \frac{1}{2} \quad 1 \text{ and}$$

$$f(x_{2}) = f(2) = \frac{1}{1+2} = \frac{1}{3}$$

$$f[x_{0}, x_{1}] = f(1) - f(0) = \frac{1}{2} - \frac{1}{1} = \frac{1}{2}$$

$$f[x_{1}, x_{2}] = \frac{f(2) - f(1)}{2 - 1} = \frac{1}{3} - \frac{1}{2} = \frac{1}{6}$$

$$f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{1}, x_{2}] - f[x_{0}, x_{1}]}{x_{2} - x_{0}} = \frac{1}{6} - (\frac{1}{2}) = \frac{1}{6}$$

March 1, 2016 11 / 46

Example Continued...

$$f[x_0, x_1] = \frac{1}{2}$$

$$f[x_0, x_1, x_2] = \frac{1}{6}$$

Example Continued...

(b) Find the first and second degree interpolating polynomials P_1 and P_2 using the Newton divided difference formula.

$$P_{1}(x) = f(x_{0}) + (x - x_{0}) f[x_{0}, x_{1}]$$

$$P_{1}(x) = | + (x - 0)(\frac{1}{2}) = \frac{1}{2}x + |$$

$$P_{2}(x) = P_{1}(x) + (x - x_{0})(x - x_{1}) f[x_{0}, x_{1}, x_{2}]$$

$$P_{3}(x) = \frac{1}{2}x + | + x(x - 1)(\frac{1}{6})$$

March 1, 2016 13 / 46

$$P_2(x) = \frac{-1}{2}x + 1 + \frac{1}{6}(x^2 - x)$$

March 1, 2016 14 / 46

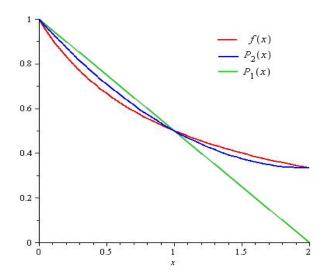


Figure: The function f(x) = 1/(1+x) together with interpolating polynomials P_1 and P_2 using $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$.

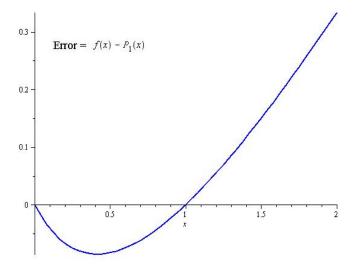


Figure: Error in the linear interpolation.

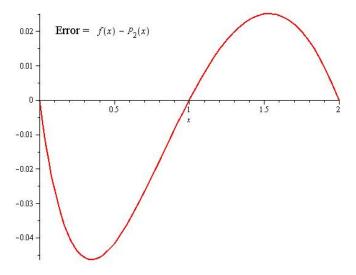


Figure: Error in the quadratic interpolation.

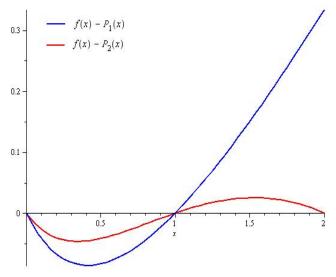


Figure: Comparison of errors when using P_1 versus P_2 to approximate f.

Section 4.2: Error in Polynomial Interpolation

The last example suggests that a higher degree polynomial results in *less error*. We'd like to characterize the error. It depends on the nature of the data (both the x and y-values).

Recall that we are interpolating data $(x_0, y_0), \ldots, (x_n, y_n)$ —a.k.a. $(x_0, f(x_0)), \ldots, (x_n, f(x_n))^1$ —with the polynomial P_n of degree at most n given by

$$P_n(x) = \sum_{j=0}^n f(x_j) L_j(x).$$

We'll often call the numbers x_0, \ldots, x_n **nodes**.

 $^{^{1}}y_{k}=f(x_{k})$

Theorem

Theorem: For $n \ge 0$, suppose f has n+1 continuous derivatives on [a,b] and let x_0, \ldots, x_n be distinct nodes in [a,b]. Then

$$f(x) - P_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(c_x)}{(n+1)!}$$

where c_x is some number between the smallest and largest values of x_0, \ldots, x_n and x.

Note what this says: It says that

$$Err(P_n(x)) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(c_x)}{(n+1)!}$$

(The number c_x isn't known, but we can use this result to bound the error.)

Remark about the error formula

The error can be restated as

$$\operatorname{Err}(P_n(x)) = \Psi_n(x) \frac{f^{(n+1)}(c_x)}{(n+1)!}$$

where Ψ_n is the n+1 degree **monic** polynomial²

$$\Psi_n(x) = (x - x_0) \cdots (x - x_n) = x^{n+1} + \text{terms with smaller powers}$$

The coefficients of those *smaller powers* depend on x_0, \ldots, x_n .

The error depends on the *y*'s due to $f^{(n+1)}(c_x)$, and on the *x*'s due to $\Psi_n(x)$.

²A monic polynomial is one whose leading coefficient is 1 - + 0 + + 2 + 2 + + 2 +

Example

Take $f(x) = \sin x$ on the interval $[0, \frac{\pi}{2}]$. Let $0 \le x_0 < x_1 \le \frac{\pi}{2}$ and consider the linear interpolation $P_1(x)$. For $x_0 < x < x_1$, show that

$$|f(x) - P_1(x)| \le \frac{h^2}{8}$$
 where $h = x_1 - x_0$

$$f(x) - P_1(x) = (x - x_0)(x - x_1) \frac{f''(c)}{z_1!}$$
 for some c between $x_0, x_1, and x$

$$f(x) = Sin x$$

 $f'(x) = Cos x$
 $f''(x) = -Sin x$ $|-Sin c| \le 1$

March 1, 2016 22 / 46

For
$$x_0 < x < x_1$$
, $x - x_0 > 0$, $x - x_1 < 0$

$$\langle (x-x_0)(x-x_1) \rangle = (x-x_0)(x_1-x_1)$$

A parabola open downward with maximum at the vertex where $x = \frac{X_0 + X_1}{2}$

$$|\psi_{(x)}| = |(x-x_b)(x_1-x)| \Rightarrow$$

$$\left| \psi_{1} \left(\frac{X_{0} + X_{1}}{2} \right) \right| = \left| \left(\frac{X_{0} + X_{1}}{2} - X_{0} \right) \left(X_{1} - \frac{X_{1} + X_{0}}{2} \right) \right|$$

$$= \left| \left(\frac{X_1 - X_0}{2} \right) \left(\frac{X_1 - X_0}{2} \right) \right| = \frac{h^2}{4}$$

So maximum for
$$|\Psi_{i}(x)|$$
 is $\frac{h^{2}}{4}$ and for $|\Psi_{i}(x)|$ is 1 .

$$\left|f(x)-P_{1}(x)\right|=\left|\Psi_{1}(x)\frac{f''(c)}{z_{1}'}\right|\leq \frac{h^{2}}{4}\cdot\frac{1}{2}=\frac{h^{2}}{8}$$

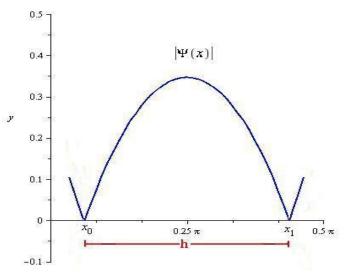


Figure: The maximum value of $(x - x_0)(x_1 - x)$ occurs at the vertex $\frac{x_0 + x_1}{2}$.

Example

Again take $f(x) = \sin x$ on the interval $[0, \frac{\pi}{2}]$. Let $0 \le x_0 < x_1 < x_2 \le \frac{\pi}{2}$ and consider the quadratic interpolation $P_2(x)$. For $x_0 < x < x_2$, show that

$$|f(x) - P_2(x)| \leq \frac{h^3}{9\sqrt{3}} \quad \text{where} \quad h = x_1 - x_0 = x_2 - x_1$$

$$f(x) - P_2(x) = (x - x_0)(x - x_1)(x - x_2) \quad \frac{f'''(c)}{3!} \quad \text{for some c}$$

$$|f'''(x)| = -Cos \times \int_{\mathbb{R}^n} |f'''(x)|^2 dx = Cos \times \int_{$$

Here
$$\Psi_{2}(x) = (x-x_0)(x-x_1)(x-x_2)$$

so
$$\psi_{1}(t)=(t+h)t(t-h)=t^{3}-h^{2}t$$

$$\Psi'_{2}(t) = 3t^{2} - h^{2}$$

$$= \frac{h^{2}}{3} \Rightarrow t = \frac{\pm h}{3}$$

2Nd derivative test
$$\psi_z$$
"(t)= 6t

$$\Psi_{2}^{"}\left(\frac{-h}{\sqrt{3}}\right) = \frac{-6h}{\sqrt{3}} < 0$$
 local max; mun.

maximum
$$\left| \psi_{z}(t) \right| = \left| \psi_{z} \left(\frac{h}{\sqrt{3}} \right) \right| = \left| \frac{h^{3}}{3\sqrt{3}} - h^{2} \left(\frac{h}{\sqrt{3}} \right) \right|$$

$$= \frac{h^{3}}{\sqrt{3}} \left(\frac{1}{3} + 1 \right) = \frac{2h^{3}}{3\sqrt{3}}$$

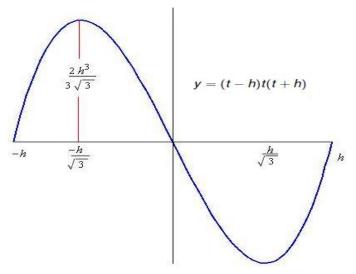


Figure: The maximum value of |(t+h)t(t-h)| occurs at $\pm \frac{h}{\sqrt{3}}$.

So

maximum of
$$|\Psi_2(x)|$$
 is $\frac{2h^3}{3\sqrt{3}}$ maximum of $|f'''(c)|$ is 1

$$|f(x) - P_2(x)| = |\Psi_2(x)| |f_{\frac{31}{3}}^{\frac{1}{12}}| \le \frac{2h^3}{3J3} \cdot \frac{1}{6}$$

$$= \frac{h^3}{\sqrt{3}}$$

Example

Take $f(x) = \ln(x+4)$ on the interval [-1, 1]. Let $x_0 = -1$, $x_1 = 0$, $x_2 = 1$ and consider the quadratic interpolation $P_2(x)$. For -1 < x < 1, show that

$$|f(x)-P_2(x)|\leq \left(\frac{2}{27}\right)\left(\frac{1}{9\sqrt{3}}\right)$$

Here
$$x_{0,1}x_{1,1}x_{2}$$
 are equally spaced.
 $x_{1,1}-x_{0}=0-(-1)=1$ and $x_{2,2}-x_{1}=1-0=1$
i.e. $h=1$.
So $|Y_{2}(x)| \leq \frac{2(1)^{3}}{3\sqrt{3}}$

March 1, 2016 34 / 46

$$f(x) = \int_{x+y}^{y} (x+y)$$
 $f''(x) = \frac{1}{(x+y)^2}$
 $f''(x) = \frac{2}{(x+y)^3}$

f" is decreasing and positive on [-1,17]. So it's biggest at the left end point -1.

$$|f''(c)| \le \frac{2}{(-1+4)^3} = \frac{2}{3^3} = \frac{2}{27}$$
 for all cin [-1,1].

S.

$$|f(x) - P_{2}(x)| = |\Psi_{2}(x)| \frac{f'''(c)}{3!}$$

$$\leq \frac{2}{3\sqrt{3}} \cdot \frac{2!_{27}}{6} = \left(\frac{1}{9\sqrt{3}}\right)\left(\frac{2}{27}\right)$$