March 1 Math 2335 sec 51 Spring 2016

Section 4.1: Polynomial Interpolation

Context: We consider a set of distinct data points $\left\{\left(x_{i}, y_{i}\right) \mid i=0, \ldots, n\right\}$ that we wish to fit with a polynomial curve.

- For a set of $n+1$ points, we can fit a polynomial $P_{n}(x)$ of degree at most n.
- We assume that the points are distinct in the sense that $x_{i} \neq x_{j}$ when $i \neq j$.
- We will have two formulations, a Lagrange formulation and a Newton divided difference formulation.

Lagrange Interpolation Formula

Suppose we have $n+1$ distinct points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. We define the $n+1$ Lagrange interpolation basis functions $L_{0}, L_{1}, \ldots, L_{n}$ by

$$
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)}
$$

for $i=0, \ldots, n$.
Compactly: $\quad L_{i}(x)=\prod_{k=0, k \neq i}^{n}\left(\frac{x-x_{k}}{x_{i}-x_{k}}\right), \quad i=0, \ldots, n$
Lagrange's Formula The unique polynomial of degree $\leq n$ passing through these $n+1$ points is

$$
P_{n}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+\cdots+y_{n} L_{n}(x)
$$

Newton Divided Differences

Definition: Let f be a function whose domain contains the two distinct numbers x_{0} and x_{1}. We define the first-order divided difference of $f(x)$ by

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Notation: We'll use the square brackets "[]" with commas between the numbers to denote the divided difference.

$$
\text { Zeroth divided difference } \quad f\left[x_{0}\right]=f\left(x_{0}\right)
$$

Higher Order Divided Differences

Suppose we start with three distinct values x_{0}, x_{1}, x_{2} in our domain. We can compute two first order divided differences

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \quad \text { and } \quad f\left[x_{1}, x_{2}\right]=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Definition: The second-order divided difference of $f(x)$ at the points x_{0}, x_{1}, and x_{2} is

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}
$$

Higher Order Divided Differences

Let $x_{0}, x_{1}, \ldots, x_{n}$ be distinct numbers in the domain of the function f. Definition: The third-order divided difference of $f(x)$ at the points x_{0}, x_{1}, x_{2}, and x_{3} is

$$
f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}}
$$

Definition: The $n^{\text {th }}$-order divided difference of $f(x)$ at the points x_{0}, \ldots, x_{n} is

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

Properties of Newton Divided Differences

Symmetry: Let $\left\{x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{n}}\right\}$ be any permutation (rearrangement) of the numbers $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Then

$$
f\left[x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{n}}\right]=f\left[x_{0}, x_{1}, \ldots, x_{n}\right] .
$$

(That is, the order of the x-values doesn't affect the value of the divided difference!)

Properties of Newton Divided Differences

Relation to Derivatives:

Theorem: Suppose f is n times continuously differentiable on an interval $\alpha \leq x \leq \beta$, and that x_{0}, \ldots, x_{n} are distinct numbers in this interval. Then

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{1}{n!} f^{(n)}(c)
$$

for some number c between the smallest and the largest of the numbers x_{0}, \ldots, x_{n}.

For example,

$$
f\left[x_{0}, x_{1}\right]=f^{\prime}(c), \quad f\left[x_{0}, x_{1}, x_{2}\right]=\frac{1}{2!} f^{\prime \prime}(c), \quad f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{1}{3!} f^{\prime \prime \prime}(c)
$$

where in each case, c is some number between the least and greatest of the x_{i} values.

Interpolating Polynomial: Newton Divided Difference

Suppose we have $n+1$ distinct data points ($x_{0}, f\left(x_{0}\right)$), $\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$.

Linear Interpolation: The linear interpolating polynomial through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ can be written as

$$
P_{1}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right] .
$$

Quadratic Interpolation: The quadratic interpolating polynomial through ($\left.x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right)$, and ($\left.x_{2}, f\left(x_{2}\right)\right)$ can be written as

$$
\begin{aligned}
P_{2}(x) & =f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right] \\
& =P_{1}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]
\end{aligned}
$$

Interpolating Polynomial: Newton Divided Difference

Higher degree polynomials are defined recursively
Cubic Interpolation: The cubic interpolating polynomial through $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$, and $\left(x_{3}, f\left(x_{3}\right)\right)$ can be written as

$$
\begin{aligned}
P_{3}(x) & =f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]+ \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \\
& =P_{2}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
\end{aligned}
$$

Interpolating Polynomial: Newton Divided Difference Formula

$k^{\text {th }}$ Degree Interpolation: For $k \geq 2$, the polynomial of degree at most k through the points $\left(x_{0}, f\left(x_{0}\right)\right), \ldots\left(x_{k}, f\left(x_{k}\right)\right)$ is

$$
P_{k}(x)=P_{k-1}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right) f\left[x_{0}, \ldots, x_{k}\right]
$$

Example
Consider the function $f(x)=1 /(1+x)$ and let $x_{0}=0, x_{1}=1$ and $x_{2}=2$.
(a) Compute the divided differences $f\left[x_{0}, x_{1}\right]$ and $f\left[x_{0}, x_{1}, x_{2}\right]$.

$$
\begin{aligned}
& f\left(x_{0}\right)=f(0)=\frac{1}{1+0}=1, f\left(x_{1}\right)=f(1)=\frac{1}{1+1}=\frac{1}{2} \quad \text {, and } \\
& f\left(x_{2}\right)=f(2)=\frac{1}{1+2}=\frac{1}{3} \\
& f\left[x_{0}, x_{1}\right]=\frac{f(1)-f(0)}{1-0}=\frac{\frac{1}{2}-1}{1}=\frac{-1}{2} \\
& f\left[x_{1}, x_{2}\right]=\frac{f(2)-f(1)}{2-1}=\frac{\frac{1}{3}-\frac{1}{2}}{1}=\frac{-1}{6} \\
& f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{\frac{-1}{6}-\left(-\frac{1}{2}\right)}{2}=\frac{1}{6}
\end{aligned}
$$

Example Continued...

So

$$
f\left[x_{0}, x_{1}\right]=\frac{-1}{2}
$$

and

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{1}{6}
$$

Example Continued...
(b) Find the first and second degree interpolating polynomials P_{1} and P_{2} using the Newton divided difference formula.

$$
\begin{gathered}
P_{1}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right] \\
P_{1}(x)=1+(x-0)\left(\frac{-1}{2}\right)=\frac{-1}{2} x+1 \\
P_{2}(x)=P_{1}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right] \\
P_{2}(x)=\frac{-1}{2} x+1+x(x-1)\left(\frac{1}{6}\right)
\end{gathered}
$$

$$
\begin{aligned}
& P_{2}(x)=\frac{-1}{2} x+1+\frac{1}{6}\left(x^{2}-x\right) \\
& P_{2}(x)=\frac{1}{6} x^{2}-\frac{2}{3} x+1
\end{aligned}
$$

Figure: The function $f(x)=1 /(1+x)$ together with interpolating polynomials P_{1} and P_{2} using $x_{0}=0, x_{1}=1$, and $x_{2}=2$.

Figure: Error in the linear interpolation.

Figure: Error in the quadratic interpolation.

Figure: Comparison of errors when using P_{1} versus P_{2} to approximate f.

Section 4.2: Error in Polynomial Interpolation

The last example suggests that a higher degree polynomial results in less error. We'd like to characterize the error. It depends on the nature of the data (both the x and y-values).

Recall that we are interpolating data $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$-a.k.a. $\left(x_{0}, f\left(x_{0}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)^{1}$ - with the polynomial P_{n} of degree at most n given by

$$
P_{n}(x)=\sum_{j=0}^{n} f\left(x_{j}\right) L_{j}(x)
$$

We'll often call the numbers x_{0}, \ldots, x_{n} nodes.

$$
{ }^{1} y_{k}=f\left(x_{k}\right)
$$

Theorem

Theorem: For $n \geq 0$, suppose f has $n+1$ continuous derivatives on $[a, b]$ and let x_{0}, \ldots, x_{n} be distinct nodes in $[a, b]$. Then

$$
f(x)-P_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!}
$$

where c_{x} is some number between the smallest and largest values of x_{0}, \ldots, x_{n} and x.

Note what this says: It says that

$$
\operatorname{Err}\left(P_{n}(x)\right)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!}
$$

(The number c_{x} isn't known, but we can use this result to bound the error.)

Remark about the error formula

The error can be restated as

$$
\operatorname{Err}\left(P_{n}(x)\right)=\psi_{n}(x) \frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!}
$$

where Ψ_{n} is the $n+1$ degree monic polynomial ${ }^{2}$

$$
\Psi_{n}(x)=\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)=x^{n+1}+\text { terms with smaller powers }
$$

The coefficients of those smaller powers depend on x_{0}, \ldots, x_{n}.

The error depends on the y 's due to $f^{(n+1)}\left(c_{x}\right)$, and on the x 's due to $\psi_{n}(x)$.

[^0]Example
Take $f(x)=\sin x$ on the interval $\left[0, \frac{\pi}{2}\right]$. Let $0 \leq x_{0}<x_{1} \leq \frac{\pi}{2}$ and consider the linear interpolation $P_{1}(x)$. For $x_{0}<x<x_{1}$, show that

$$
\begin{aligned}
& \left|f(x)-P_{1}(x)\right| \leq \frac{h^{2}}{8} \text { where } h=x_{1}-x_{0} \\
& f(x)-P_{1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{f^{\prime \prime}(c)}{2!} \quad \text { for some } c \text { between } \\
& x_{0}, x_{1}, \text { and } x \\
& f(x)=\sin x \\
& f^{\prime}(x)=\cos x \\
& f^{\prime \prime}(x)=-\sin x \quad \text { For } \quad 0 \leq c \leq \pi / 2
\end{aligned}
$$

For $x_{0}<x<x_{1}, \quad x-x_{0}>0, \quad x-x_{1}<0$

So

$$
\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right|=\left(x-x_{0}\right)\left(x_{1}-x\right)
$$

A parabola open downward with maximum at the vertex where $x=\frac{x_{0}+x_{1}}{2}$

$$
\begin{aligned}
& \left|\Psi_{1}(x)\right|=\left|\left(x-x_{0}\right)\left(x_{1}-x\right)\right| \Rightarrow \\
& \quad\left|\Psi_{1}\left(\frac{x_{0}+x_{1}}{2}\right)\right|=\left|\left(\frac{x_{0}+x_{1}}{2}-x_{0}\right)\left(x_{1}-\frac{x_{1}+x_{0}}{2}\right)\right|
\end{aligned}
$$

$$
=\left|\left(\frac{x_{1}-x_{0}}{2}\right)\left(\frac{x_{1}-x_{0}}{2}\right)\right|=\frac{h^{2}}{4}
$$

So maximum for $\left|\Psi_{1}(x)\right|$ is $\frac{h^{2}}{4}$ and for $\left|f^{\prime \prime}(c)\right|$ is 1 .

$$
\left|f(x)-P_{1}(x)\right|=\left|\Psi_{1}(x) \frac{f^{\prime \prime}(c)}{2!}\right| \leq \frac{h^{2}}{4} \cdot \frac{1}{2}=\frac{h^{2}}{8}
$$

Figure: The maximum value of $\left(x-x_{0}\right)\left(x_{1}-x\right)$ occurs at the vertex $\frac{x_{0}+x_{1}}{2}$.

Example
Again take $f(x)=\sin x$ on the interval $\left[0, \frac{\pi}{2}\right]$. Let $0 \leq x_{0}<x_{1}<x_{2} \leq \frac{\pi}{2}$ and consider the quadratic interpolation $P_{2}(x)$. For $x_{0}<x<x_{2}$, show that

$$
\begin{aligned}
& \left|f(x)-P_{2}(x)\right| \leq \frac{h^{3}}{9 \sqrt{3}} \text { where } h=x_{1}-x_{0}=x_{2}-x_{1} \\
& f(x)-P_{2}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \frac{f^{\prime \prime \prime}(c)}{3!} \quad \begin{array}{l}
\text { for some } c \\
\text { between } \\
x_{0} \text { and } x_{2}
\end{array} \\
& f^{\prime \prime \prime}(x)=-\cos x
\end{aligned}
$$

for $0 \leq c \leq \pi / 2$

$$
|-\cos c| \leq 1
$$

Here $\Psi_{2}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)$
Let $t=x-x_{1}$ since $x_{0}=x_{1}-h \quad x-x_{0}=x-\left(x_{1}-h\right)$

$$
=t+h
$$

Since $x_{2}=x_{1}+h, \quad x-x_{2}=x-\left(x_{1}+h\right)$

$$
=t-h
$$

so $\psi_{2}(t)=(t+h) t(t-h)=t^{3}-h^{2} t$
Use calculus to find the maximum value of

$$
\left|\psi_{2}(t)\right|
$$

$$
\begin{gathered}
\psi_{2}^{\prime}(t)=3 t^{2}-h^{2} \quad \psi_{2}^{\prime}(t)=0 \Rightarrow 3 t^{2}-h^{2}=0 \\
\Rightarrow t^{2}=\frac{h^{2}}{3} \Rightarrow t=\frac{ \pm h}{\sqrt{3}}
\end{gathered}
$$

$2^{n d}$ derivative test $\Psi_{2}^{\prime \prime}(t)=6 t$

$$
\psi_{2}^{\prime \prime}\left(\frac{-h}{\sqrt{3}}\right)=\frac{-6 h}{\sqrt{3}}<0 \quad \text { locd maximum. }
$$

$\operatorname{maximum}\left|\psi_{2}(t)\right|=\left|\psi_{2}\left(\frac{-h}{\sqrt{3}}\right)\right|=\left|\frac{-h^{3}}{3 \sqrt{3}}-h^{2}\left(\frac{-h}{\sqrt{3}}\right)\right|$

$$
=\frac{h^{3}}{\sqrt{3}}\left(\frac{-1}{3}+1\right)=\frac{2 h^{3}}{3 \sqrt{3}}
$$

Figure: The maximum value of $|(t+h) t(t-h)|$ occurs at $\pm \frac{h}{\sqrt{3}}$.

So
maximum of $\left|\Psi_{2}(x)\right|$ is $\frac{2 h^{3}}{3 \sqrt{3}}$
maximum of $\left|f^{\prime \prime \prime}(c)\right|$ is 1

$$
\begin{aligned}
\left|f(x)-P_{2}(x)\right|=\left|\Psi_{2}(x)\right|\left|\frac{f^{\prime \prime \prime}(c)}{3!}\right| & \leqslant \frac{2 h^{3}}{3 \sqrt{3}} \cdot \frac{1}{6} \\
& =\frac{h^{3}}{9 \sqrt{3}}
\end{aligned}
$$

Example
Take $f(x)=\ln (x+4)$ on the interval $[-1,1]$. Let $x_{0}=-1, x_{1}=0$, $x_{2}=1$ and consider the quadratic interpolation $P_{2}(x)$. For $-1<x<1$, show that

$$
\left|f(x)-P_{2}(x)\right| \leq\left(\frac{2}{27}\right)\left(\frac{1}{9 \sqrt{3}}\right)
$$

Here x_{0}, x_{1}, x_{2} are equally spaced.

$$
\begin{gathered}
x_{1}-x_{0}=0-(-1)=1 \text { and } x_{2}-x_{1}=1-0=1 \\
\text { ie. } h=1
\end{gathered}
$$

so $\left|\Psi_{2}(x)\right| \leqslant \frac{2(1)^{3}}{3 \sqrt{3}}$

$$
\begin{array}{ll}
f(x)=\ln (x+4), & f^{\prime \prime}(x)=\frac{-1}{(x+4)^{2}} \\
f^{\prime}(x)=\frac{1}{x+4}, & f^{\prime \prime \prime}(x)=\frac{2}{(x+4)^{3}}
\end{array}
$$

$f^{\prime \prime \prime}$ is decreasing and positive on $[-1,1]$. So it's biggest at the left end point -1 .
$\left|f^{\prime \prime \prime}(c)\right| \leqslant \frac{2}{(-1+4)^{3}}=\frac{2}{3^{3}}=\frac{2}{27}$ for all $\operatorname{cin}[-1,1]$.

So

$$
\begin{aligned}
\left|f(x)-P_{2}(x)\right| & =\left|\Psi_{2}(x) \frac{f^{\prime \prime \prime}(c)}{3!}\right| \\
& \leq \frac{2}{3 \sqrt{3}} \cdot \frac{2 / 27}{6}=\left(\frac{1}{9 \sqrt{3}}\right)\left(\frac{2}{27}\right)
\end{aligned}
$$

[^0]: ${ }^{2} \mathrm{~A}$ monic polynomial is one whose leading coefficient is 1

