Mar. 20 Math 2254H sec 015H Spring 2015

Section 11.3: The Integral Test

Theorem: Let $\sum a_n$ be a series of positive terms and let the function *f* defined on $[1, \infty)$ be continuous, positive and decreasing with

$$a_n = f(n)$$

(i) If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent. (ii) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Both series and integral converge, or both series and integral diverge.

Special Series: *p*-series

The series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is called a *p*-series.

Theorem: The *p*-series converges if p > 1 and diverges if $p \le 1$.

Example: Determine if the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$$
 (b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$$
$$P = \frac{5}{2} > 1$$
$$P = \frac{1}{3} < 1$$
$$diversent$$

March 19, 2015 2 / 6

()

Note About Indices

Remark: Adding or removing a **finite number of terms** from a series does NOT affect convergence!

For example: If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=5}^{\infty} a_n$ converges.

If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=27}^{\infty} a_n$ also must diverge.

So we can compare sums and integrals with lower limits other than 1. That is, we can use

$$\int_{5}^{\infty} f(x) dx$$
 to examine the series $\sum_{n=1}^{\infty} f(x) dx$

an

March 19, 2015

3/6

if f and a_n have the necessary properties.

Example

Determine if the series converges or diverges.

$$f(x) = \frac{x}{e^{x}} = x e^{x} \text{ is positive only cont, for } x = 3$$

$$f'(x) = e^{x} - x e^{x} = (1 - x) e^{x} < 0 \text{ for all } x > 1$$

$$s_{1} f(x) = e^{x} - x e^{x} = (1 - x) e^{x} < 0 \text{ for all } x > 1$$

 $\sum_{n=1}^{\infty} \frac{n}{e^n}$

$$\int_{3}^{\infty} x e^{-x} dx = \int_{1-\infty}^{1} \int_{3}^{1} x e^{-x} dx$$

$$= \int_{1-\infty}^{1} \int_{3}^{1} x e^{-x} dx$$

$$= \int_{1-\infty}^{1} \int_{3}^{1} x e^{-x} dx$$

$$= \int_{3}^{1} \int_{3}^{1} x e^{-x} dx$$

du= dx u= x * Jxe dx

 $V = -e^{-x}$

 $= -xe^{x} - \int (-e^{x}) dx$

 $= -xe^{x} + \int e^{x} dx$

dv: ex dx

= - x e + - e + C

$$= \lim_{k \to \infty} \frac{1}{e^{t}} = 0$$

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >