March 20 Math 2306 sec. 60 Spring 2018

Section 12: LRC Series Circuits

Figure: Kirchhoff's Law: The charge q on the capacitor satisfies $L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t)$.

This is a second order, linear, constant coefficient nonhomogeneous (if $E \neq 0$) equation.

LRC Series Circuit (Free Electrical Vibrations)

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=0
$$

If the applied force $E(t)=0$, then the electrical vibrations of the circuit are said to be free. These are categorized as

$$
\begin{array}{ll}
\text { overdamped if } & R^{2}-4 L / C>0, \\
\text { critically damped if } & R^{2}-4 L / C=0, \\
\text { underdamped if } & R^{2}-4 L / C<0 .
\end{array}
$$

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0}
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t)
$$

The function of q_{c} is influenced by the initial state (q_{0} and i_{0}) and will decay exponentially as $t \rightarrow \infty$. Hence q_{c} is called the transient state charge of the system.

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0} .
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t) .
$$

The function q_{p} is independent of the initial state but depends on the characteristics of the circuit (L, R, and C) and the applied voltage E. q_{p} is called the steady state charge of the system.

Example
An LRC series circuit has inductance 0.5 h , resistance 10 ohms, and capacitance $4 \cdot 10^{-3} \mathrm{f}$. Find the steady state current of the system if the applied force is $E(t)=5 \cos (10 t)$.

$$
\begin{aligned}
& L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E \quad L=\frac{1}{2}, R=10, C=4 \cdot 10^{-3} \\
& E=5 \cos (10 t) \\
& \frac{1}{2} q^{\prime \prime}+10 q^{\prime}+\frac{1}{4 \cdot 10^{-3}} q=5 \cos (10 t) \\
& q^{\prime \prime}+20 q^{\prime}+500 q=10 \cos (10 t)
\end{aligned}
$$

Cheractuistic eqn

$$
r^{2}+20 r+500=0
$$

Complete the square

$$
\begin{gathered}
r^{2}+20 r+100+400=0 \\
(r+10)^{2}+400=0 \\
(r+10)^{2}=-400 \\
r+10= \pm \sqrt{-20^{2}}= \pm 20 i \\
r=-10 \pm 20 i \quad-10 t \sin (20 t) \\
q_{c}=c_{1} e^{-10 t} \cos (20 t)+c_{2} e^{-10} \cos (10 t)
\end{gathered}
$$

Using undetermined coefficients

$$
\begin{aligned}
& q_{p}=A \operatorname{Cos}(10 t)+B \sin (10 t) \\
& q_{p}{ }^{\prime}=-10 A \sin (10 t)+10 B \operatorname{Cos}(10 t) \\
& q_{p}{ }^{\prime}=-100 A \operatorname{Cor}(10 t)-100 B \sin (10 t) \\
&-100 A \cos (10 t)-1000 \sin (10 t)+20(-10 A \sin (10 t)+10 B \cos (10 t))+500(A \cos (10 t)+B \sin (10 t)) \\
&=10 \operatorname{cor}(10 t)+O \sin (10 t) \\
& \operatorname{Cos}(10 t)(-100 A+200 B+500 A)+\sin (10 t)(-100 B-200 A+500 B) \\
&=10 \operatorname{Cos}(10 t)+0 \sin (10 t)
\end{aligned}
$$

$$
\begin{array}{rr}
400 A+200 B=10 & \\
-200 A+400 B=0 & \stackrel{400 A+200 B}{ }=10 \\
\int & \left.\begin{array}{l}
-400 A+8 D 0 B
\end{array}\right) \\
A=2 B=\frac{2}{100}=\frac{1}{50} & B=\frac{1}{100}
\end{array}
$$

So

$$
q_{p}=\frac{1}{50} \cos (10 t)+\frac{1}{100} \sin (10 t)
$$

the steady state charge,
To get steady stake current, use $i_{p}=\frac{d g_{p}}{d t}$

$$
i_{p}=\frac{-10}{50} \sin (10 t)+\frac{10}{100} \cos (10 t)
$$

The steady state current

$$
i_{p}=\frac{1}{10} \cos (10 t)-\frac{1}{5} \sin (10 t)
$$

Section 13: The Laplace Transform

A quick word about functions of 2-variables:
Suppose $G(s, t)$ is a function of two independent variables (s and t) defined over some rectangle in the plane $a \leq t \leq b, c \leq s \leq d$. If we compute an integral with respect to one of these variables, say t,

$$
\int_{\alpha}^{\beta} G(s, t) d t
$$

- the result is a function of the remaining variable s, and
- the variable s is treated as a constant while integrating with respect to t.

Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t .
$$

- The function K is called the kernel of the transformation.
- The limits a and b may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t .
$$

The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.
Note 2: If we take s to be real-valued, then

$$
\lim _{t \rightarrow \infty} e^{-s t}=0 \quad \text { if } s>0, \text { and } \quad \lim _{t \rightarrow \infty} e^{-s t}=\infty \quad \text { if } s<0
$$

Find the Laplace transform of $f(t)=1$
By definition $\mathscr{L}\{1\}=\int_{0}^{\infty} e^{-s t} \cdot 1 d t$
Case 1: $s=0$. The integer is $\int_{0}^{\infty} d t$ which is divergent. zero is not in the domes of $\mathscr{L}\{1\}$.

Case 2: $s \neq 0$ the integral

$$
\begin{aligned}
\int_{0}^{\infty} e^{-s t} d t & =\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t \\
& =\left.\lim _{b \rightarrow \infty} \frac{-1}{s} e^{-s t}\right|_{0} ^{b}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty} \frac{-1}{s}\left(e^{-s b}-e^{0}\right) \quad \begin{array}{r}
\text { Converguna } \\
\text { requires } \\
s>0
\end{array} \\
& =\frac{-1}{s}(0-1)=\frac{1}{s} \quad \begin{array}{l}
\text { for } \\
s>0
\end{array}
\end{aligned}
$$

so $y\{1\}=\frac{1}{S}$ with domain $s>0$.

Find the Laplace transform of $f(t)=t$
By definition $y\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
Case 1: $s=0$. the integral is $\int_{0}^{\infty} t d t$ which diverse zero is not in the domain of $\mathscr{L}\{t\}$.

Cere 2: $5 \neq 0$

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} t d t \\
= & \left.\frac{-1}{5} 5 e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{-1}{5} e^{-s t} d t
\end{aligned}
$$

$$
u=t \quad d u=d t
$$

$$
v=\frac{-1}{5} e^{-s t} d v=e^{-s t} d t
$$

$$
=\frac{-1}{s}(0-0)+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t
$$

$$
\lim _{t \rightarrow \infty} t e^{-s t}=0
$$

$$
\text { if } s>0
$$

for $s>0$

$$
=\frac{1}{s} \mathscr{L}\{1\}=\frac{1}{s}\left(\frac{1}{s}\right)=\frac{1}{s^{2}}, \text { for } s>0 .
$$

$\mathcal{Z}\{t\}=\frac{1}{s^{2}}$ with doman $s>0$.

A piecewise defined function Find the Laplace transform of f defined by

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{ll}
2 t, & 0 \leq t<10 \\
0, & t \geq 10
\end{array} \quad y\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t\right. \\
& \mathcal{Y}\{f(t)\}=\int_{0}^{10} e^{-s t} f(t) d t+\int_{10}^{\infty} e^{-s t} f(t) d t \\
&=\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} e^{-s t} \cdot 0 d t \\
&=\int_{0}^{10} 2 e^{-s t} t d t
\end{aligned}
$$

$$
s=0 \text { case } \int_{0}^{10} 2 t d t=\left.t^{2}\right|_{0} ^{10}=100
$$

for $s \neq 0 \quad \mathcal{L}\{f(t)\}=\int_{0}^{10} 2 e^{-s t}(t d t$

$$
\begin{aligned}
& =2\left[\left.\frac{-1}{5} t e^{-s t}\right|_{0} ^{10}+\frac{1}{s} \int_{0}^{10} e^{-s t} d t\right. \\
& =2\left[\frac{-1}{5} 10 e^{-10 s}-\left(\frac{-1}{5} \cdot 0\right)-\left.\frac{1}{s^{2}} e^{-s t}\right|_{0} ^{10}\right. \\
& =2\left(\frac{-10}{5} e^{-10 s}-\frac{1}{s^{2}}\left(e^{-10 s}-e^{0}\right)\right) \\
& =\frac{-20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}+\frac{2}{s^{2}}
\end{aligned}
$$

March 15, $2018 \quad 22 / 90$

$$
y\{f(t)\}=\left\{\begin{array}{lc}
100, & s=0 \\
\frac{2}{s^{2}}-\frac{2}{s^{2}} e^{-10 s}-\frac{20}{s} e^{-10 s}, & s \neq 0
\end{array}\right.
$$

