March 20 Math 3260 sec. 55 Spring 2018

Section 4.3: Linearly Independent Sets and Bases

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis of H provided
(i) \mathcal{B} is linearly independent, and
(ii) $H=\operatorname{Span}(\mathcal{B})$.

We can think of a basis as a minimal spanning set. All of the information needed to construct vectors in H is contained in the basis, and none of this information is repeated.

Standard Basis in \mathbb{R}^{n}

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^{n}. This is called the standard basis for \mathbb{R}^{n}. For example, the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3} are

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \quad \text { and } \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { respectively. }
$$

Other Vector Spaces

Other vector spaces have standard bases as well. For example, $\left\{1, t, t^{2}, \ldots, t^{n}\right\} \quad$ is a standard basis for \mathbb{P}_{n}
$\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a standard basis for $M^{2 \times 2}$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Theorem:

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a set in a vector space V and $H=\operatorname{Span}(S)$.
(a.) If one of the vectors in S, say \mathbf{v}_{k} is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_{k} still spans H.
(b) If $H \neq\{\mathbf{0}\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive at a basis.

Column Space
Find a basis for the column space matrix B that is in reduced row echelon form

$$
\begin{aligned}
B & =\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] . \\
& =\left[\vec{b}_{1} \vec{b}_{2} \vec{b}_{3} \vec{b}_{4} \vec{b}_{s}\right]
\end{aligned}
$$

Col B is the subspace of \mathbb{R}^{4} spanned by the columns of B. To get a basis, we need a linearly independent subset of B's columns.

By observation:

$$
\begin{aligned}
& \text { irisation: } \quad \vec{b}_{3} \text { doesit depend on } \vec{b}_{1} \\
& \vec{b}_{2}=4 \vec{b}_{1}, \text { keep } \vec{b}_{1}, \vec{b}_{3}
\end{aligned}
$$

toss \vec{b}_{2}

$$
\text { keep } \vec{b}_{1}, \vec{b}_{3}
$$

$$
\vec{b}_{4}=2 \vec{b}_{1}-\vec{b}_{3}
$$

toss \vec{b}_{n}
\vec{b}_{5} doesnil dead on \vec{b}_{1} or \vec{b}_{3} or $\left\{\vec{b}_{1}, \vec{b}_{3}\right\}$

$$
\text { keep } \vec{b}_{s}
$$

A basis for $\operatorname{col} B$ is

$$
\left\{\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{s}\right\}
$$

Using the rref

Theorem: If $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$ and $B=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]$ are row equivalent matrices, then Nul $A=\mathrm{Nul} B$. That is, the equations

$$
A \mathbf{x}=\mathbf{0} \text { and } B \mathbf{x}=\mathbf{0}
$$

have the same solution set.

Note what this means! It means that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ and $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ have exactly the same linear dependence relationships!

Theorem:

The pivot columns of a matrix A form a basis of $\operatorname{Col} A$.

Caveat: This means we can use row reduction to identify a basis, but the vectors we obtain will be from the original matrix A. (As illustrated in the following example.)

Find a basis for Col A^{1}
well use the ref to identity

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & -1 \\
3 & 12 & 1 & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right] . \quad \rightarrow^{\text {rest }}\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

pivot columns are 1,3, no 5 . we use the $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}$ coleman of A.

$$
\operatorname{Col} A=\operatorname{spn}\left\{\left[\begin{array}{l}
1 \\
3 \\
2 \\
5
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
2 \\
3
\end{array}\right]\right\}
$$

This set is a basis.

Find bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$

$$
A=\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
2 & 1 & 5 & 1
\end{array}\right]
$$

we can set both from the ref. For $\operatorname{col} A$ we identity pivot columns. For vel A, we use it to find the solution set of $A \vec{x}=\overrightarrow{0}$.

$$
A \xrightarrow{\text { rest }}\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 1 & -1 & 5
\end{array}\right]
$$

lIst two columns ane pivot columns.
A basis for coll is $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.

For NeA, note $A \vec{x}=0 \Rightarrow x_{1}=-3 x_{3}+2 x_{4}$

$$
\begin{aligned}
& x_{2}=x_{3}-5 x_{4} \\
& x_{3}, x_{4}-\text { fien }
\end{aligned}
$$

For \vec{x} in Nul A

$$
\vec{x}=x_{3}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-5 \\
0 \\
1
\end{array}\right]
$$

A basis for NulA is $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -5 \\ 0 \\ 1\end{array}\right]\right\}$.

Section 4.4: Coordinate Systems

We begin with a theorem about uniqueness of linear combinations (of linearly independent vectors).

Theorem: Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each vector \mathbf{x} in V, there is a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n} .
$$

$$
\begin{aligned}
& \text { To see this, suppose } \\
& \qquad \begin{aligned}
\vec{x} & =c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+\vec{c}_{n} \vec{b}_{n} \\
\vec{x} & =a_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+a_{n} \vec{b}_{n}
\end{aligned} \\
& \text { subtract the } 2^{\text {nd }} \text { line for the first }
\end{aligned}
$$

$$
\overrightarrow{0}=\left(c_{1}-a_{1}\right) \vec{b}_{1}+\left(c_{2}-a_{2}\right) \vec{b}_{2}+\cdots+\left(c_{n}-a_{n}\right) \vec{b}_{n}
$$

β is a basis! The b_{i} vectors ave linearly, independent. Hence

$$
\left.\begin{array}{c}
c_{1}-a_{1}=0 \\
c_{2}-a_{2}=0 \\
\vdots \\
c_{n}-a_{n}=0
\end{array}\right\} \Rightarrow \begin{gathered}
a_{1}=c_{1} \\
a_{2}=c_{2} \\
\vdots \\
a_{n}=c_{n}
\end{gathered}
$$

The coefficients are unique for a given \vec{x}.

Coordinate Vectors

Definition: Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} where these entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.

We'll use the notation

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=[\mathbf{x}]_{\mathcal{B}}
$$

Example

Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ (in that order) in \mathbb{P}_{3}. Determine $[\mathbf{p}]_{\mathcal{B}}$ where
(a) $\mathbf{p}(t)=3-4 t^{2}+6 t^{3}=(3) 1+(0) t+(-4) t^{2}+6 t^{3}$

$$
[\vec{p}]_{B}=\left[\begin{array}{c}
3 \\
0 \\
-4 \\
6
\end{array}\right]
$$

(b) $\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}$

$$
[\vec{P}]_{B}=\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
P_{3}
\end{array}\right]
$$

Example
Let $\mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=\left[\begin{array}{l}4 \\ 5\end{array}\right] . \quad[\vec{x}]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ where $\vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}$

So

$$
c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

in matrix format

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

Let's use a matrix inverse to solve (not the only option!).

$$
\text { If } A=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right], \operatorname{det}(A)=3 \text { so } A^{-1}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]
$$

So

$$
\begin{aligned}
{[\vec{x}]_{B}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
4 \\
5
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

Coordinates in \mathbb{R}^{n}

Note from this example that $\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ where $P_{\mathcal{B}}$ is the matrix $\left[\mathbf{b}_{1} \mathbf{b}_{2}\right.$. The matrix $P_{\mathcal{B}}$ is called the change of coordinates matrix for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

where the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

