March 20 Math 3260 sec. 56 Spring 2018

Section 4.3: Linearly Independent Sets and Bases

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a **basis** of H provided

- (i) \mathcal{B} is linearly independent, and
- (ii) $H = \operatorname{Span}(\mathcal{B})$.

We can think of a basis as a *minimal spanning set*. All of the *information* needed to construct vectors in *H* is contained in the basis, and none of this information is repeated.

Standard Basis in \mathbb{R}^n

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^n . This is called the **standard basis** for \mathbb{R}^n . For example, the standard bases in \mathbb{R}^2 and \mathbb{R}^3 are

$$\left\{ \left[\begin{array}{c} 1 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \right\}, \quad \text{and} \quad \left\{ \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right] \right\} \quad \text{respectively}.$$

Other Vector Spaces

Other vector spaces have **standard** bases as well. For example,

$$\{1, t, t^2, \dots, t^n\}$$
 is a standard basis for \mathbb{P}_n

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\} \text{ is a standard basis for } \textit{M}^{2\times2}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Theorem:

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a set in a vector space V and $H = \operatorname{Span}(S)$.

(a.) If one of the vectors in S, say \mathbf{v}_k is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_k still spans H.

(b) If $H \neq \{0\}$, then some subset of *S* is a basis for *H*.

If we start with a spanning set, we can eliminate *duplication* and arrive at a basis.

4 / 44

Column Space

Find a basis for the column space matrix *B* that is in reduced row echelon form

$$B = \left[\begin{array}{ccccc} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

ColB is the subspace of RY sponned by the columns of B. Le on get a basis by toking the alimns of B and renoving those that depend on the remaining columns.

Tos doesn't depend on To, and for Tos (keep Tos)

Using the rref

Theorem: If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ are row equivalent matrices, then Nul A = Nul B. That is, the equations

$$A\mathbf{x} = \mathbf{0}$$
 and $B\mathbf{x} = \mathbf{0}$

have the same solution set.

Note what this means! It means that $\{a_1, ..., a_n\}$ and $\{b_1, ..., b_n\}$ have **exactly the same linear dependence relationships**!

Theorem:

The pivot columns of a matrix A form a basis of Col A.

Caveat: This means we can use row reduction to identify a basis, but the vectors we obtain will be from the original matrix A. (As illustrated in the following example.)

Find a basis for Col A

$$A = \left[\begin{array}{rrrrr} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{array} \right].$$

We can use the rect to find the Pivot Columns.

A first
$$\begin{cases} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{cases}$$
A hasis is
$$\begin{cases} \begin{bmatrix} 1 \\ 3 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ 8 \end{bmatrix} \end{cases}$$

pivot columns one columns 1, 3, and 5

A basis for cola is the set wil columns 1, 3, and 5

S of A.

Find bases for Nul A and Col A

$$A = \left[\begin{array}{rrrr} 1 & 0 & 3 & -2 \\ 2 & 1 & 5 & 1 \end{array} \right]$$

We can use the rref. For ColA we identify proof columns.

For Nul A, we use the rref to characterize solutions to

AX = 0.

So
$$\vec{\chi} = \chi_3 \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \chi_4 \begin{bmatrix} 2 \\ -5 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \\ 0 \\ 1 \end{bmatrix}$$

Section 4.4: Coordinate Systems

We begin with a theorem about uniqueness of linear combinations (of linearly independent vectors).

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each vector \mathbf{x} in V, there is a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \cdots c_n \mathbf{b}_n$$
.

To see this, suppose for a given
$$\vec{X}$$

$$\vec{X} = C_1 \vec{b}_1 + C_2 \vec{b}_2 + \dots + C_n \vec{b}_n \qquad \text{and} \qquad \qquad \vec{X} = \vec{a}_1 \vec{b}_1 + \vec{a}_2 \vec{b}_2 + \dots + \vec{a}_n \vec{b}_n$$
Let's subtract the 2^{n2} equation from the 1^{s+}

Bis linearly independent, so this homogeneous equation has only the trivial solution

$$\begin{vmatrix}
C_1 - a_1 = 0 \\
C_2 - a_2 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
C_1 = a_1 \\
C_2 = a_2
\end{vmatrix}$$

$$\begin{vmatrix}
C_n = a_n \\
C_n = a_n
\end{vmatrix}$$

There is only one set of coefficients for A given X.

Coordinate Vectors

Definition: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an **ordered** basis of the vector space V. For each \mathbf{x} in V we define the **coordinate vector of \mathbf{x} relative to the basis** \mathcal{B} to be the unique vector (c_1, \dots, c_n) in \mathbb{R}^n where these entries are the weights $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

We'll use the notation

$$\left[egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{arra$$

Example

Let $\mathcal{B} = \{1, t, t^2, t^3\}$ (in that order) in \mathbb{P}_3 . Determine $[\mathbf{p}]_{\mathcal{B}}$ where

(a)
$$\mathbf{p}(t) = 3 - 4t^2 + 6t^3 = (3) + (6) + (-4) + (6) + ($$

(b)
$$\mathbf{p}(t) = p_0 + p_1 t + p_2 t^2 + p_3 t^3$$

$$\begin{bmatrix} \vec{\rho} \end{bmatrix}_{\vec{\beta}} = \begin{bmatrix} \rho_0 \\ \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}$$

Example

Let
$$\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x} = \begin{bmatrix} 4 \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
 be not $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ where

we set
$$C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

In matrix form
$$\begin{bmatrix}
2 & -1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = \begin{bmatrix}
4 \\
5
\end{bmatrix}$$

Lit's use MOTE & invense

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{B} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} c_{2} \\ c_{1} \end{bmatrix} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} c_{2} \\ c_{3} \end{bmatrix}$$

where \vec{x}

Coordinates in \mathbb{R}^n

Note from this example that $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ where $P_{\mathcal{B}}$ is the matrix $[\mathbf{b}_1 \ \mathbf{b}_2]$. The matrix $P_{\mathcal{B}}$ is called the **change of coordinates matrix** for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . Then the change of coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

where the matrix

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n].$$

