March 21 Math 1190 sec. 63 Spring 2017

Section 4.2: Maximum and Minimum Values; Critical Numbers
Let's start with some review questions inspired by last Thursday's quiz!

Question

Power function

$$
x^{n} \in \begin{gathered}
\text { constant } \\
\text { power }
\end{gathered}
$$

Let $y=x^{x^{2}}$. Which of the following is true?
(a) The power rule gives $y^{\prime}=\left(x^{2}\right) x^{x^{2}-1}$.
(b) The exponential rule gives $y^{\prime}=x^{x^{2}} \ln x$.
(c) y is the product of x and x^{2}.

Exponentice function

(d) There is no derivative rule that applies directly to y.

Question

Let $y=x^{x^{2}}$. Which of the following is true?
(a) $y=x^{2} \ln x$
$\ln y=\ln x^{x^{2}}=x^{2} \ln x$
(b) $\ln y=x^{2} \ln x$
chair

(c) $\frac{1}{y}=x^{2} \frac{1}{x}$
(d) $\ln y=2 x \ln x$

Question

$$
\frac{d}{d x} d \ln y=\frac{d}{d x} x^{2} \ln x
$$

(a) $\frac{d y}{d x}=2 x \ln x+x$

$$
\frac{1}{y} \frac{d y}{d x}=2 x \ln x+x^{2} \frac{1}{x}
$$

(b) $\frac{d y}{d x}=2 x^{x^{2}}$
(c) $\frac{d y}{d x}=2$
(d) $\frac{d y}{d x}=x^{x^{2}}(2 x \ln x+x)$

$$
\begin{aligned}
\frac{d y}{d x} & =y(2 x \ln x+x) \\
& =x^{x^{2}}(2 x \ln x+x)
\end{aligned}
$$

Question

True or False. $\ln x=\frac{1}{x}$
it is true that $\frac{d}{d x} \ln x=\frac{1}{x}$

Question

Given $y=\ln (\ln x)$, find y^{\prime}.
(a) $y^{\prime}=\frac{1}{x \ln x}$

$$
\frac{d y}{d x}=\frac{\frac{d}{d x} \ln x}{\ln x}=\frac{\frac{1}{x}}{\ln x}
$$

(b) $y^{\prime}=\frac{1}{\ln (\ln x)}$

$$
=\frac{1}{x \ln x}
$$

(c) $y^{\prime}=\frac{1}{(\ln x)^{2}}$
(d) $y^{\prime}=\frac{1}{\ln x}$

Section 4.3: The Mean Value Theorem

Recall

Rolle's Theorem: Let f be a function that is
i continuous on the closed interval $[a, b]$,
ii differentiable on the open interval (a, b), and
iii such that $f(a)=f(b)$.
Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

If f takes the same y-value at both ends, and is continuous and smooth in between them, then it's either horizontal, or it turns around. Somewhere there must be a horizontal tangent!

The Mean Value Theorem

Theorem: Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \text { equivalently } f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

If f is continuous and smooth between the point $(a, f(a))$ and $(b, f(b))$, then somewhere between them is a point where the tangent is parallel to the secant line connecting the ends.

Rate of Change and Slope

From day 1 of class: Given a line $y=m x+b$, and a change in the independent variable Δx,
the change in the dependent variable is

$$
\Delta y=m \Delta x
$$

Now look at the conclusion of the MVT!

$$
\begin{array}{clc}
f(b)-f(a) & =f^{\prime}(c) & (b-a) \\
\text { change in } y & =\text { a slope } & \text { change in } x \\
\Delta y & =m & \Delta x
\end{array}
$$

A couple of questions we can ask...

An Interesting Question: We know that $f^{\prime}(x)=0$ if f is a constant function. Is the converse true? That is, if $f^{\prime}(x)=0$ does that mean that f is a constant function?

Another Interesting Question: If we have two functions f and g such that on some interval

$$
f^{\prime}(x)=g^{\prime}(x)
$$

does this mean that f and g have to be the same function?

Important Consequence of the MVT

An Interesting Question: We know that $f^{\prime}(x)=0$ if f is a constant function. Is the converse true? That is, if $f^{\prime}(x)=0$ does that mean that f is a constant function?

Theorem: If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

The only function with derivative zeno on an interval is a constant function.

Important Consequence of the MVT

Another Interesting Question: If we have two functions f and g such that on some interval

$$
f^{\prime}(x)=g^{\prime}(x),
$$

does this mean that f and g have to be the same function? No.
They con differ, but at most by on added constout,

Corollary: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b), then $f-g$ is constant on (a, b). In other words,

$$
f(x)=g(x)+C \quad \text { where } C \text { is some constant. }
$$

Examples
Find all possible functions $f(x)$ that satisfy the condition
(a) $f^{\prime}(x)=\cos x$ on $(-\infty, \infty)$

$$
\frac{d}{d x} \sin x=\cos x
$$

So all such functions ane of the form $f(x)=\sin x+C$ for a arbitrary constant C.
(b) $f^{\prime}(x)=2 x$ on $(-\infty, \infty)$

$$
\frac{d}{d x} x^{2}=2 x
$$

so all functions look like $f(x)=x^{2}+C$ for arbitrary constant C.

Question

Find all possible functions $h(t)$ that satisfy the condition
(c) $h^{\prime}(t)=\sec ^{2} t$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $h(t)=\sec ^{2} t+C$
(b) $h(t)=\tan t+1$
(C) $h(t)=\tan t+C$

Another Consequence of the MVT

Another significant consequence of the MVT is that it provides a test for the increasing and decreasing behavior of a differentiable function.

Theorem: Let f be differentiable on an open interval (a, b). If

- $f^{\prime}(x)>0$ on (a, b), the f is increasing on (a, b), and if
- $f^{\prime}(x)<0$ on (a, b), the f is decreasing on (a, b).

Example
Determine the intervals over which f is increasing and the intervals over which it is decreasing where

$$
f(x)=6 x^{4}-32 x^{3}-7
$$

- find $f^{\prime}(x)$
- Determine where $f^{\prime}(x)=0$ and where $f^{\prime}(x)$ is undefined.
- we split the domain into intervals determined by these numbers.
- test the sign of f^{\prime} in each intended
- base a conclusion on the sign analysis.

The domain for $f(x)=6 x^{4}-32 x^{3}-7$ is $(-\infty, \infty)$.

$$
f^{\prime}(x)=24 x^{3}-96 x^{2}=24 x^{2}(x-4)
$$

$f^{\prime}(x)$ is never undefined

$$
\begin{aligned}
f^{\prime}(x) & =0 & \Rightarrow & 24 x^{2} & (x-4) & =0 \\
& \Rightarrow & x^{2} & =0 & \text { or } & x-4
\end{aligned}=0
$$

These divide the domain into 3 interval

$$
(-\infty, 0),(0,4), \text { and }(4, \infty)
$$

$$
f^{\prime}(x)=24 x^{2}(x-4)
$$

Test the sign:
test pt $-1, f^{\prime}(-1)=24(-1)^{2}(-1-4)=-120$ negation

$$
1, f^{\prime}(1)=24(1)^{2}(1-4)=-72 \text { negative }
$$

$s, f^{\prime}(s)=24(s)^{2}(s-4)=600$ positive
f is decreasing on $(-\infty, 0) \cup(0,4)$
f is increasing on $(4, \infty)$.

* Note that the conclusion is over intervals.

Question

Suppose that we compute the derivative of some function g and find

$$
g^{\prime}(x)=(2+x) e^{x / 2} .
$$

Determine the intervals over which g is increasing and over which it is decreasing.
(a) g is increasing on $(-1 / 2, \infty)$ and decreasing on $(-\infty,-1 / 2)$.
(b) g is increasing on $(-2, \infty)$ and decreasing on $(-\infty,-2)$.
(c) g is increasing on $(2, \infty)$ and decreasing on $(-\infty, 2)$.
(d) g is increasing on $(-\infty,-2)$ and decreasing on $(-2, \infty)$.

Section 4.4: Local Extrema and Concavity

We have already seen that the first derivative f^{\prime} can tell us about the behaviour of the function f-in particular, it gives information about where it is increasing or decreasing, and where it may take a local extreme value.

In this section, we'll expand on that as well as introduce information about a function that can be deduced from the nature of its second derivative.

Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f.

- If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
- If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
- If f^{\prime} does not change signs at c, then f does not have a local extremum at c.

Note: we read from left to right as usual when looking for a sign change.

Figure: First derivative test

Example
Find all the critical points of the function and classify each one as a local maximum, a local minimum, or neither.

$$
f(x)=16 \sqrt[3]{x}-x \sqrt[3]{x}=16 x^{1 / 3}-x^{4 / 3}
$$

- we do the sam sign analysis as before, then
- classify critical numbers based on the results.

$$
\begin{aligned}
f^{\prime}(x) & =16\left(\frac{1}{3} x^{-2 / 3}\right)-\frac{4}{3} x^{1 / 3} \\
& =\frac{16}{3} x^{-2 / 3}-\frac{4}{3} x^{1 / 3} \\
& =\frac{4}{3} x^{-2 / 3}(4-x)=\frac{4(4-x)}{3 x^{2 / 3}}
\end{aligned}
$$

The doman ot f is $(-\infty, \infty)$.
Find criticel ${ }^{\#}$'s.

$$
f^{\prime}(x)=0 \text { if } \quad 4(4-x)=0 \Rightarrow x=4
$$

$f^{\prime}(x)$ is undefind if $3 x^{2 / 3}=0 \Rightarrow x=0$.

$$
f^{\prime}(x)=\frac{4(4-x)}{3 x^{2 / 3}}
$$

Test pts: $f_{-1}^{\prime}(-1)=\frac{4(4-(-1))}{3(-1)^{2 / 3}} \quad \frac{(+)}{(t)}$ positive

$$
\begin{aligned}
& 1 \quad f^{\prime}(1)=\frac{4(4-1)}{3(1)^{2 / 3}} \frac{(+)}{(+)} \quad \text { position } \\
& 5 \\
& f^{\prime}(5)=\frac{4(4-5)}{3(5)^{2 / 3}} \\
& \frac{(-)}{(+)}
\end{aligned}
$$

f has neither a max nor a min at the critical number 0 . f takes a local maximum at 4 .

Question

Consider the function $f(t)=t^{4}+4 t^{3}$. Which of the following is true about this function?
(a) f has no critical numbers.
(b) f has critical numbers 0 and -4 .

$$
f^{\prime}(t)=4 t^{3}+12 t^{2}
$$

$$
=4 t^{2}(t+3)
$$

(c) f has critical numbers 4 and 12 .
(d) f has critical numbers 0 and -3 .

Question

Consider the function $f(t)=t^{4}+4 t^{3}$. Which of the following is true about this function?
(a) f has a local minimum at $t=0$ and a local maximum at $t=-3$.
(b) f has a local minimum at $t=-3$ and a local maximum at $t=0$.
(c) f has a local minimum at $t=-3$.
(d) f has a local minimum at $t=0$.

Concavity and The Second Derivative

Concavity: refers to the bending nature of a graph. In particular, a curve is concave down if it's cupped side is down, and it is concave up if it's cupped upward.

Concavity

Figure

Figure: A graph can have either increasing or decreasing behavior and be either concave up or down.

Figure: We can consider concavity at a point, but it's best thought of as a property over an interval. Many function's graphs have concavity that changes over the domain.

Definition of Concavity

Concave Up: If the graph of a function f lies above all of its tangent lines over an interval I, then f is concave up on I.

Concave Down: If the graph of f lies below each of its tangent lines on an interval I, f is concave down on I.

Theorem: (Second Derivative Test for Concavity) Suppose f is twice differentiable on an interval I.

- If $f^{\prime \prime}(x)>0$ on I, then the graph of f is concave up on I.
- If $f^{\prime \prime}(x)<0$ on I, then the graph of f is concave down on I.

Definition: A point P on a curve $y=f(x)$ is called an inflection point if f is continuous at P and the concavity of f changes at P (from down to up or from up to down). A point where $f^{\prime \prime}(x)=0$ would be a candidate for being an inflection point.

Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema) Suppose $f^{\prime}(c)=0$ and that $f^{\prime \prime}$ is continuous near c. Then

- if $f^{\prime \prime}(c)>0, f$ takes a local minimum at c,
- if $f^{\prime \prime}(c)<0$, then f takes a local maximum at c.

If $f^{\prime \prime}(c)=0$, then the test fails. f may or may not have a local extrema. You can go back to the first derivative test to find out.

