March 22 Math 2306 sec. 57 Spring 2018

Section 13: The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Some Examples

We computed the following Laplace transforms from the definition

$$
\begin{gathered}
\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0 \\
\mathscr{L}\{t\}=\frac{1}{s^{2}}, \quad s>0 \\
\mathscr{L}\{f(t)\}= \begin{cases}\frac{2}{s^{2}}-\frac{2}{s^{2}} e^{-10 s}-\frac{20}{s} e^{-10 s}, & s \neq 0 \\
100, & s=0\end{cases}
\end{gathered}
$$

where $f(t)= \begin{cases}2 t, & 0 \leq t<10 \\ 0, & t \geq 10\end{cases}$

A Table of Laplace Transforms

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s) \quad \mathscr{L}\{g \mid t)\}=G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Examples: Evaluate the Laplace tronstom of
(c) $f(t)=(2-t)^{2}=4-4 t+t^{2}$

Distribute first

$$
\begin{aligned}
\mathcal{L}\{f(t)\}=\mathscr{L}\left\{4-4 t+t^{2}\right\} & =4 \mathcal{L}\{1\}-4 \mathcal{L}\{t\}+\mathcal{L}\left\{t^{2}\right\} \\
& =4\left(\frac{1}{s}\right)-4\left(\frac{1!}{s^{+1+1}}\right)+\frac{2!}{s^{2+1}} \\
& =\frac{4}{s}-\frac{4}{s^{2}}+\frac{2}{s^{3}}
\end{aligned}
$$

Examples: Evaluate
Recall
(d) $f(t)=\sin ^{2} 5 t$

$$
\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)
$$

$=\frac{1}{2}-\frac{1}{2} \operatorname{Cos}(10 t)$

$$
\begin{aligned}
\mathscr{L}\left\{\sin ^{2}(s t)\right\} & =\mathcal{L}\left\{\frac{1}{2}-\frac{1}{2} \cos (10 t)\right\} \\
& =\frac{1}{2} \mathscr{L}\{1\}-\frac{1}{2} \mathcal{L}\{\cos (10 t)\} \\
& =\frac{1}{2}\left(\frac{1}{s}\right)-\frac{1}{2}\left(\frac{s}{s^{2}+100}\right) \\
& =\frac{\frac{1}{2}}{s}-\frac{\frac{1}{2} s}{s^{2}+100}
\end{aligned}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

$$
\text { if grows notasten then ar exponential } e^{c t} \text {. }
$$

Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.
(noverticed asbmptutes)

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.

An example of a function that is NOT of exponential order for any c is $f(t)=e^{t^{2}}$. Note that

$$
f(t)=e^{t^{2}}=\left(e^{t}\right)^{t} \quad \Longrightarrow \quad|f(t)|>e^{c t} \quad \text { whenever } \quad t>c .
$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Find the Inverse Laplace Transform
When using the table, we have to match the expression inside the brackets $\}$ EXACTLY! Algebra, including partial fraction decomposition, is often needed.
(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$

$$
\text { Note } \frac{1}{s^{7}}=\frac{6!}{6!} \cdot \frac{1}{s^{7}}=\frac{1}{6!} \frac{6!}{s^{7}}
$$

$$
\text { so } \mathcal{L}^{-1}\left\{\frac{1}{s^{7}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{6!} \frac{6!}{s^{7}}\right\}=\frac{1}{6!} \mathcal{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{6!} t^{6}
$$

Example: Evaluate
(b)

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\} \quad \begin{aligned}
& \frac{s+1}{s^{2}+9}=\frac{s}{s^{2}+3^{2}}+\frac{1}{s^{2}+3^{2}} \\
&=\frac{s}{s^{2}+3^{2}}+\frac{1}{3} \frac{3}{s^{2}+3^{2}} \\
&=\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}+\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\} \\
&= \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\} \\
&=\cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
\end{aligned}
$$

Example: Evaluate
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$

$$
\frac{s-8}{s^{2}-2 s}=\frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2}
$$

Cleer fractions

$$
s-8=A(s-2)+B s
$$

whon $s=0 \quad-8=-2 A \Rightarrow A=4$

$$
s=2 \quad-6=2 B \Rightarrow B=-3
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathcal{L}^{-1}\left\{\frac{4}{5}-\frac{3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{5}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4-3 e^{2 t}
\end{aligned}
$$

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

By definition

$$
\begin{aligned}
& \mathscr{L}\left\{e^{t} t^{2}\right\}=\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t \quad e^{-s t} e \\
&=\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t \\
& \text { This is } \mathscr{L}\left\{t^{2}\right\} \text { w| } s \text { replaced with } s-1 .
\end{aligned}
$$

Observe that this is simply the Laplace transform of $f(t)=t^{2}$ evaluated at $s-1$. Letting $F(s)=\mathscr{L}\left\{t^{2}\right\}$, we have

$$
F(s-1)=\frac{2}{(s-1)^{3}}
$$

Theorem (translation in s)

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t t^{n}}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} \quad s^{2}+2 s+2$ is irreducible.
well complete the square

$$
\begin{aligned}
& s^{2}+2 s+2=s^{2}+2 s+1+1 \\
&=(s+1)^{2}+1 \\
& \frac{s}{s^{2}+2 s+2}=\frac{s}{(s+1)^{2}+1}=\frac{s+1-1}{(s+1)^{2}+1} \\
&=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}
\end{aligned}
$$

So

$$
\left.\begin{array}{rl}
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} & =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& =e^{-t} \cos t-e^{-t} \sin t
\end{array}\right\}
$$

$$
\text { and } \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}=\cos t, \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}=\sin t
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\} \quad$ Use particle fractions

$$
\begin{aligned}
\frac{1+3 s-s^{2}}{s(s-1)^{2}} & =\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \begin{array}{c}
\text { Clear } \\
\text { fractions } \\
s(s-1)^{2}
\end{array} \\
1+3 s-s^{2} & =A(s-1)^{2}+B s(s-1)+C s \\
& =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
-s^{2}+3 s+1 & =(A+B) s^{2}+(-2 A-B+C) s+A
\end{aligned}
$$

$$
\begin{aligned}
& A=1 \\
&-2 A-B+C=3 \\
& A+B=-1 \Rightarrow B=-1-A=-1-1=-2 \\
& C=3+2 A+B=3+2 \cdot 1-2=3 \\
& \mathcal{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}\right\} \\
&=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\} \\
&=1-2 e^{t}+3 e^{t} t
\end{aligned}
$$

Note : $\dot{g}^{-1}\left\{\frac{1}{s^{s}}\right\}=t$
so $\mathscr{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}=e^{t} \cdot t$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions
Verify that

$$
f(t)=\left\{\begin{array}{ll}
g(t), & 0 \leq t<a \\
h(t), & t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

For $0 \leq t<a, u(t-a)=0$
so $f(t)=g(t)-g(t) \cdot 0+h(t) \cdot 0=g(t)$ as required.
For $t \geqslant a, u(t-a)=1$, then

$$
f(t)=g(t)-g(t) \cdot 1+h(t) \cdot 1=h(t) \text { also. as }
$$ required.

