March 22 Math 2306 sec. 60 Spring 2018

Section 13: The Laplace Transform

Definition: Let f(t) be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$\mathscr{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt = F(s).$$

The domain of the transformation F(s) is the set of all s such that the integral is convergent.

Some Examples

We computed the following Laplace transforms from the definition

$$\mathcal{L}\{1\} = \frac{1}{s}, \quad s > 0$$

$$\mathcal{L}\{t\} = \frac{1}{s^2}, \quad s > 0$$

$$\mathcal{L}\{f(t)\} = \begin{cases} \frac{2}{s^2} - \frac{2}{s^2}e^{-10s} - \frac{20}{s}e^{-10s}, & s \neq 0\\ 100, & s = 0 \end{cases}$$

where
$$f(t) = \begin{cases} 2t, & 0 \le t < 10 \\ 0, & t \ge 10 \end{cases}$$

A Table of Laplace Transforms

Some basic results include:

•
$$\mathscr{L}\{t^n\} = \frac{n!}{s^{n+1}}, \quad s > 0 \text{ for } n = 1, 2, ...$$

•
$$\mathcal{L}\{\sin kt\} = \frac{k}{s^2 + k^2}, \quad s > 0$$

Examples: Evaluate the Lopker tens for of

(a)
$$f(t) = \cos(\pi t)$$

Examples: Evaluate

(b)
$$f(t) = 2t^4 - e^{-5t} + 3$$

$$2\left\{2t^4 - e^{-5t} + 3\right\} = 2\left\{t^4\right\} - 2\left\{e^{-5t}\right\} + 32\left\{1\right\}$$

$$= 2\left(\frac{4!}{5^{4+1}}\right) - \frac{1}{5^{-(-5)}} + 3\left(\frac{1}{5}\right)$$

$$= \frac{48}{5^5} - \frac{1}{5^4} + \frac{3}{5}$$

Examples: Evaluate

(c)
$$f(t) = (2-t)^2 = 4 - 4t + t^2$$

expand first
$$y\{(z-t)^2\} = f\{4 - 4t + t^2\}$$

$$= 4f\{1\} - 4f\{t\} + f\{t^2\}$$

$$= 4(\frac{1}{5}) - 4(\frac{1!}{5!}) + \frac{2!}{5!}$$

$$= \frac{4}{5!} - \frac{4}{5!} + \frac{2}{5!}$$

Sufficient Conditions for Existence of $\mathcal{L}\{f(t)\}\$

Definition: Let c > 0. A function f defined on $[0, \infty)$ is said to be of *exponential order c* provided there exists positive constants M and T such that $|f(t)| < Me^{ct}$ for all t > T.

Definition: A function f is said to be *piecewise continuous* on an interval [a, b] if f has at most finitely many jump discontinuities on [a, b] and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathcal{L}\{f(t)\}\$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some c > 0, then f has a Laplace transform for s > c.

An example of a function that is NOT of exponential order for any c is $f(t) = e^{t^2}$. Note that

$$f(t) = e^{t^2} = \left(e^t\right)^t \quad \Longrightarrow \quad |f(t)| > e^{ct} \quad \text{whenever} \quad t > c.$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

Section 14: Inverse Laplace Transforms

Now we wish to go *backwards*: Given F(s) can we find a function f(t) such that $\mathcal{L}\{f(t)\} = F(s)$?

If so, we'll use the following notation

$$\mathscr{L}^{-1}{F(s)} = f(t)$$
 provided $\mathscr{L}{f(t)} = F(s)$.

We'll call f(t) an inverse Laplace transform of F(s).

A Table of Inverse Laplace Transforms

$$\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = 1$$

•
$$\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\} = t^n$$
, for $n = 1, 2, ...$

$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+k^2}\right\} = \cos kt$$

The inverse Laplace transform is also linear so that

$$\mathscr{L}^{-1}\{\alpha F(s) + \beta G(s)\} = \alpha f(t) + \beta g(t)$$

Find the Inverse Laplace Transform

When using the table, we have to match the expression inside the brackets {} **EXACTLY**! Algebra, including partial fraction decomposition, is often needed.

(a)
$$\mathcal{L}^{-1}\left\{\frac{1}{s^7}\right\}$$
 From the table $y^{-1}\left\{\frac{6!}{s^7}\right\} = t^6$

$$\frac{1}{x^{7}} = \frac{6!}{6!} \frac{1}{x^{7}} = \frac{1}{6!} \frac{6!}{x^{7}}$$

Example: Evaluate

(b)
$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+9}\right\}$$
 $\frac{s+1}{s^2+9} = \frac{s}{s^2+3^2} + \frac{1}{s^2+3^2}$

$$= \frac{s}{s^2+3^2} + \frac{1}{3} + \frac{3}{s^2+3^2}$$

$$= \sqrt{1}\left\{\frac{s}{s^2+3^2} + \frac{1}{3} + \frac{3}{s^2+3^2}\right\} = Cor(3+) + \frac{1}{3} Sin(3+)$$

$$= \sqrt{1}\left\{\frac{s}{s^2+3^2}\right\} + \frac{1}{3} + \frac{1$$

Example: Evaluate

(c)
$$\mathscr{L}^{-1}\left\{\frac{s-8}{s^2-2s}\right\}$$

$$\frac{8-8}{S_5-5} = \frac{2-8}{2(2-5)} = \frac{2}{2} + \frac{2}{2} + \frac{2}{2}$$
Clear teachon

$$S-8 = A(S-2) + BS$$

 $S=0 -8 = -2A \implies A=4$
 $S=2 -6 = 2B \implies B=-3$

$$y''\left\{\frac{s-8}{s^2-2s}\right\} = y''\left\{\frac{4}{s} - \frac{3}{s-2}\right\}$$

$$= y y''\left\{\frac{1}{s} - 3y''\left\{\frac{1}{s-2}\right\}\right\}$$

$$= 4(1) - 3(e^{t})$$

$$= 4 - 3e^{t}$$

١

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathcal{L}^{-1}\left\{\frac{2}{(s-1)^3}\right\}$. Does it help to know that $\mathcal{L}\left\{t^2\right\} = \frac{2}{s}$?

$$\mathcal{L}\left\{t^{2}\right\} = \frac{2}{s^{3}}?$$
By definition
$$\mathcal{L}\left\{e^{t}t^{2}\right\} = \int_{0}^{\infty} e^{-st}e^{t}t^{2}dt$$

$$= \int_{0}^{\infty} \frac{-(s-1)t}{e} t^{2}dt$$

$$= \int_{0}^{\infty} \frac{-(s-1)t}{e} t^{2}dt$$

$$= \int_{0}^{\infty} \frac{-(s-1)t}{e} t^{2}dt$$

Observe that this is simply the Laplace transform of $f(t) = t^2$ evaluated at s-1. Letting $F(s) = \mathcal{L}\{t^2\}$, we have

$$F(s-1) = \frac{2}{(s-1)^3}$$
.

Theorem (translation in s)

Suppose $\mathcal{L}\{f(t)\} = F(s)$. Then for any real number a

$$\mathscr{L}\left\{e^{at}f(t)\right\}=F(s-a).$$

For example,

$$\mathscr{L}\left\{t^{n}\right\} = \frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{e^{at}t^{n}\right\} = \frac{n!}{(s-a)^{n+1}}.$$

$$\mathscr{L}\left\{\cos(kt)\right\} = \frac{s}{s^2 + k^2} \quad \Longrightarrow \quad \mathscr{L}\left\{e^{at}\cos(kt)\right\} = \frac{s - a}{(s - a)^2 + k^2}.$$

March 20, 2018 18 / 69

Inverse Laplace Transforms (completing the square)

(a)
$$\mathscr{L}^{-1}\left\{\frac{s}{s^2+2s+2}\right\}$$

$$S^2 + 2s + 2 = S^2 + 2s + 1 + 1$$

$$= (s+1)^2 + 1$$

$$\frac{S}{S^{2}+2S+2} = \frac{S}{(S+1)^{2}+1} = \frac{S+1-1}{(S+1)^{2}+1}$$

March 20, 2018 19 / 69

$$= \frac{S+1}{(S+1)^{2}+1} - \frac{1}{(S+1)^{2}+1}$$

$$= \frac{S}{S^{2}+1^{2}} \qquad \text{Not. } S+1 = S-(-1)$$

$$= \frac{S}{S^{2}+1^{2}} \qquad \frac{1}{S^{2}+1^{2}} \qquad S-(-1)$$

$$= \frac{S}{S^{2}+2S+2} = \frac{1}{2} \left(\frac{S+1}{(S+1)^{2}+1} \right) - \frac{1}{2} \left(\frac{1}{(S+1)^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{S}{S^{2}+2S+2} \right) = \frac{1}{2} \left(\frac{S+1}{(S+1)^{2}+1} \right) - \frac{1}{2} \left(\frac{1}{(S+1)^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{S}{S^{2}+2S+2} \right) = \frac{1}{2} \left(\frac{S+1}{(S+1)^{2}+1} \right) - \frac{1}{2} \left(\frac{1}{(S+1)^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{S}{S^{2}+2S+2} \right) = \frac{1}{2} \left(\frac{S+1}{(S+1)^{2}+1} \right) - \frac{1}{2} \left(\frac{1}{(S+1)^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{S}{S^{2}+2S+2} \right) = \frac{1}{2} \left(\frac{S+1}{(S+1)^{2}+1} \right) - \frac{1}{2} \left(\frac{1}{(S+1)^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{S}{S^{2}+2S+2} \right) = \frac{1}{2} \left(\frac{S+1}{(S+1)^{2}+1} \right) - \frac{1}{2} \left(\frac{1}{(S+1)^{2}+1} \right)$$

Inverse Laplace Transforms (repeat linear factors)

(b)
$$\mathcal{L}\left\{\frac{1+3s-s^2}{s(s-1)^2}\right\}$$
 Po a partial fraction de comp

$$\frac{1+3s-s^2}{s(s-1)^2} = \frac{A}{s} + \frac{B}{s-1} + \frac{C}{(s-1)^2}$$
 S(s-1)

$$1+3s-s^{2} = A(s-1)^{2} + Bs(s-1) + Cs$$

$$= A(s^{2}-2s+1) + B(s^{2}-5) + Cs$$

