March 22 Math 2335 sec 51 Spring 2016

Section 5.1: Numerical Integration, the Trapezoid and Simpson Rules

Our goal is to evaluate a definite integral

$$
I(f)=\int_{a}^{b} f(x) d x
$$

We may recall the Fundamental Theorem of Calculus tells us

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

provided $F(x)$ is any anti-derivative of $f(x)$.

Trapezoid Rule (one trapezoid on $[a, b]$)

$$
\int_{a}^{b} P_{1}(x) d x=\frac{1}{2}(b-a)[f(b)+f(a)]
$$

We'll call the right side $T_{1}(f)$, and we can write

$$
\int_{a}^{b} f(x) d x \approx T_{1}(f) .
$$

The trapezoid rule with one interval is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2}(b-a)[f(b)+f(a)]=T_{1}(f) .
$$

Figure: Illustration of the Trapezoid with one interval to approximate an integral.

Example
Find the approximation $T_{1}(f)^{1}$ for the integral. Compute the error and relative error.

$$
\int_{0}^{0.1} e^{-x^{2}} d x
$$

$$
T_{1}(f)=\frac{b-a}{2}[f(a)+f(b)]
$$

Here $b=0.1, a=0, f(x)=e^{-x^{2}}$

$$
\begin{aligned}
\int_{0}^{0.1} e^{-x^{2}} d x \approx T_{1}(f) & =\frac{0.1-0}{2}\left[e^{-0^{2}}+e^{-(0.1)^{2}}\right] \\
& =0.05\left[1+e^{-0.01}\right] \stackrel{1}{=} 0.09950
\end{aligned}
$$

${ }^{1}$ The value is $I(f)=\frac{\sqrt{\pi}}{2} \operatorname{erf}(0.1) \approx 0.09967$.

$$
\begin{aligned}
\operatorname{Err}\left(T_{1}(f)\right) & =\int_{0}^{0.1} e^{-x^{2}} d x-T_{1}(f) \\
& =0.09967-0.09950=0.00017 \\
\operatorname{Rel}\left(T_{1}(f)\right) & =\frac{\operatorname{Err}\left(T_{1}(f)\right)}{\int_{0}^{0.1} e^{-x^{2}} d x}=\frac{0.00017}{0.09967}=0.0017
\end{aligned}
$$

Multiple Subintervals

We can expect to get a better approximation by dividing $[a, b]$ into several subintervals, and using a trapezoid on each.

Figure: Illustration of the Trapezoid rule with three sub-intervals to approximate an integral.

Trapezoid Rule w/ n Sub-intervals

We consider an equally spaced partition of $[a, b]$

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

where

$$
x_{j}=x_{0}+j h, \quad \text { and } \quad h=\frac{b-a}{n}
$$

By properties of integrals

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}^{\prime \prime}} f(x) d x
$$

Trapezoid Rule w/ n Sub-intervals

Using T_{1} on the interval $\left[x_{j-1}, x_{j}\right]$ gives

$$
\int_{x_{j-1}}^{x_{j}} f(x) d x \approx T_{1}(f)=\frac{h}{2}\left[f\left(x_{j-1}\right)+f\left(x_{j}\right)\right] .
$$

Use this to show that

$$
\begin{aligned}
I(f) & \approx \frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
\int_{a}^{b} f(x) d x & =\int_{x_{0}}^{x_{1}} \cdots+\int_{x_{1}}^{x_{2}} \cdots+\int_{x_{2}}^{x_{3}} \cdots+\cdots+\int_{x_{n, 1}}^{x_{n}} \cdots
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{h}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{h}{2}\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
& +\ldots+\frac{h}{2}\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] . \\
& =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Trapezoid Rule w/ n Sub-intervals

If $[a, b]$ is divided into n equally spaced subintervals of length $h=(b-a) / n$, then $I(f) \approx T_{n}(f)$ where

$$
T_{n}(f)=\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

The T stands for "Trapezoid Rule" and the subscript n indicates the number of subintervals.

$$
\text { Recall } x_{0}=a, x_{j}=x_{0}+j h \quad j=1, \ldots, n
$$

Example
Approximate $I(f)$ with $T_{2}(f)$ and $T_{4}(f)$ where

$$
I(f)=\int_{0}^{1} \frac{d x}{x^{2}+1}
$$

Compare the answers to the exact solution $I(f)=\frac{\pi}{4}$ (recall $\left.T_{1}(f)=\frac{3}{4}\right)$.

$$
\begin{aligned}
& T_{2}(f)=\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \\
& h=\frac{1-0}{2}=\frac{1}{2} \quad x_{0}=0, \quad x_{1}=\frac{1}{2}, x_{2}=1 \\
& f\left(x_{0}\right)=\frac{1}{1+0^{2}}=1, f\left(x_{1}\right)=\frac{1}{1+\left(\frac{1}{2}\right)^{2}}=\frac{4}{5}, f\left(x_{2}\right)=\frac{1}{1+1^{2}}=\frac{1}{2} \\
& T_{2}(f)=\frac{1}{4}\left[1+2 \cdot \frac{4}{5}+\frac{1}{2}\right]=\frac{1}{4}\left[\frac{10+16+5}{10}\right]=\frac{31}{40}=0.775
\end{aligned}
$$

$$
\begin{aligned}
& T_{4}: h=\frac{1-0}{4} \\
&=\frac{1}{4} \\
& x_{0}=0, x_{1}=\frac{1}{4}, x_{2}=\frac{1}{2}, x_{3}=\frac{3}{4}, x_{4}=1 \\
& T_{4}(f)=\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& f\left(x_{0}\right)=1, f\left(x_{1}\right)=\frac{1}{1+\left(\frac{1}{4}\right)^{2}}=\frac{16}{17}, f\left(x_{2}\right)=\frac{4}{5} \\
& f\left(x_{3}\right)=\frac{1}{1+\left(3^{3} /\right)^{2}}=\frac{16}{25}, f\left(x_{4}\right)=\frac{1}{2}
\end{aligned}
$$

$$
\begin{gathered}
T_{4}=\frac{1}{8}\left[1+2 \cdot \frac{16}{17}+2 \cdot \frac{4}{5}+2 \cdot \frac{16}{25}+\frac{1}{2}\right]=\frac{5325}{6800} \\
=0.7828
\end{gathered}
$$

$$
\frac{\pi}{4} \doteq 0.7854, \quad \operatorname{Rel}\left(T_{4}(f)\right) \doteq 0.0033
$$

Simpson's Rule

Another way to improve on T_{1} would be to use a higher degree polynomial-say P_{2} instead of P_{1}. (Recall that P_{2} requires three nodes.)

Special Case:

Consider $f(x)$ defined on $[-h, h]$ with the three nodes $x_{0}=-h, x_{1}=0$, and $x_{2}=h$. We have

$$
\begin{aligned}
P_{2}(x) & =f\left(x_{0}\right) L_{0}(x)+f\left(x_{1}\right) L_{1}(x)+f\left(x_{2}\right) L_{2}(x) \\
& =f(-h) \frac{x(x-h)}{2 h^{2}}+f(0) \frac{\left(h^{2}-x^{2}\right)}{h^{2}}+f(h) \frac{x(x+h)}{2 h^{2}}
\end{aligned}
$$

Show that for $L_{0}(x)=x(x-h) /\left(2 h^{2}\right)$ that

$$
\begin{aligned}
\int_{-h}^{h} L_{0}(x) d x & =\frac{h}{3} \\
\int_{-h}^{h} L_{0}(x) d x & =\int_{-h}^{h} \frac{x(x-h)}{2 h^{2}} d x=\frac{1}{2 h^{2}} \int_{-h}^{h}\left(x^{2}-x h\right) d x \\
& =\frac{1}{2 h^{2}}\left[\frac{x^{3}}{3}-\left.h \frac{x^{2}}{2}\right|_{-h} ^{h}\right. \\
& =\frac{1}{2 h^{2}}\left[\frac{h^{3}}{3}-h \frac{h^{2}}{2}-\left(\frac{-h^{3}}{3}-h \cdot \frac{h^{2}}{2}\right)\right] \\
& =\frac{1}{2 h^{2}}\left[\frac{h^{3}}{3}-\frac{h^{3}}{2}+\frac{h^{3}}{3}+\frac{h^{3}}{2}\right]
\end{aligned}
$$

2

$$
\begin{aligned}
& =\frac{1}{2 h^{2}}\left[\frac{2 h^{3}}{3}\right]=\frac{h}{3} \\
& \text { ie. } \quad \int_{-h}^{h} L_{0}(x) d x=\frac{h}{3}
\end{aligned}
$$

${ }^{2}$ It can be shown that $\int_{-h}^{h} L_{2}(x) d x=\frac{h}{3}$ as well.

Show that for $L_{1}(x)=\left(h^{2}-x^{2}\right) /\left(h^{2}\right)$ that

$$
\begin{aligned}
\int_{-h}^{h} L_{1}(x) d x & =\frac{4 h}{3} \\
\int_{-h}^{h} L_{1}(x) d x & =\int_{-h}^{h}\left(\frac{h^{2}-x^{2}}{h^{2}}\right) d x=\frac{1}{h^{2}} \int_{-h}^{h}\left(h^{2}-x^{2}\right) d x \\
& =\frac{2}{h^{2}} \int_{0}^{h}\left(h^{2}-x^{2}\right) d x \quad \text { by even symmetry } \\
& =\frac{2}{h^{2}}\left[h^{2} x-\left.\frac{x^{3}}{3}\right|_{0} ^{h}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{h^{2}}\left[h^{2} \cdot h-\frac{h^{3}}{3}-0\right] \\
& =\frac{2}{h^{2}}\left[h^{3}-\frac{1}{3} h^{3}\right]=\frac{2}{h^{2}}\left(\frac{2 h^{3}}{3}\right)=\frac{4 h}{3}
\end{aligned}
$$

Simpson's Rule

We have $\int_{-h}^{h} L_{0}(x) d x=\int_{-h}^{h} L_{2}(x) d x=h / 3$ and $\int_{-h}^{h} L_{1}(x) d x=4 h / 3$ so that

$$
I(f)=\int_{-h}^{h} f(x) d x \approx \int_{-h}^{h} P_{2}(x) d x=\frac{h}{3}[f(-h)+4 f(0)+f(h)]
$$

Note that the right hand side is

$$
\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]=S_{2}(f)
$$

The "S" stands for Simpson's rule, and the subscript 2 indicates that there are two subintervals.

Simpson's Rule S_{2} on $[a, b]$

For $I(f)=\int_{a}^{b} f(x) d x$, let

$$
x_{0}=a, \quad x_{1}=\frac{a+b}{2}, \quad x_{2}=b, \quad \text { and } \quad h=\frac{b-a}{2} .
$$

Then

$$
\begin{aligned}
I(f) \approx S_{2}(f) & =\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \\
& =\frac{h}{3}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] .
\end{aligned}
$$

S_{2} Illustrated

Figure: Illustration of Simpson's rule with two sub-intervals to approximate an integral.

Example
Approximate $I(f)$ with $S_{2}(f)$ and compare (compute error and relative error) the result to the true answer $\frac{\pi}{4}$ where

$$
\begin{aligned}
& I(f)=\int_{0}^{1} \frac{d x}{x^{2}+1} \quad S_{2}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right], h=\frac{b-a}{2} \\
& h=\frac{1-0}{2}=\frac{1}{2}, \quad x_{0}=0, \quad x_{1}=\frac{1}{2}, \quad x_{2}=1 \\
& f\left(x_{0}\right)=1, \quad f\left(x_{1}\right)=\frac{4}{5}, \quad f\left(x_{2}\right)=\frac{1}{2} \\
& S_{2}(f)=\frac{1 / 2}{3}\left[1+4 \cdot \frac{4}{5}+\frac{1}{2}\right]=\frac{1}{6}\left[1+\frac{16}{5}+\frac{1}{2}\right]=\frac{10+32+5}{60}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{47}{60} \doteq 0.7833 \\
& \operatorname{Rel}\left(S_{2}(f)\right)=0.0027 \\
& \text { Recall } \operatorname{Rel}\left(T_{4}(f)\right)=0.0033
\end{aligned}
$$

Simpson's Rule with n Subintervals

The number n must be even.

Divide $[a, b]$ into n equal subintervals. Set

$$
h=\frac{b-a}{n}, \quad x_{0}=a, \quad x_{j}=a+j h, \quad j=1, \ldots, n-1 \quad \text { and } \quad x_{n}=b
$$

Then $I(f) \approx S_{n}(f)$ where

$$
\begin{array}{r}
S_{n}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{h}{3}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
+\cdots+\frac{h}{3}\left[f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] .
\end{array}
$$

Simpson's Rule with n Subintervals

$$
\begin{array}{r}
S_{n}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{h}{3}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
+\cdots+\frac{h}{3}\left[f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] .
\end{array}
$$

Note that the coefficients of $f\left(x_{0}\right)$ and $f\left(x_{n}\right)$ will be 1.

The coefficients for even numbered nodes $f\left(x_{2}\right), f\left(x_{4}\right)$, etc. will be 2.

And coefficients for odd numbered nodes $f\left(x_{1}\right), f\left(x_{3}\right)$, etc. will be 4.

Simpson's Rule with n Subintervals

$$
\begin{aligned}
S_{n}(f)= & \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\right. \\
& \left.+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Example
Approximate $I(f)$ with $S_{4}(f)$ and compare the result to the true answer $\frac{\pi}{4}$ where

$$
\begin{aligned}
& I(f)=\int_{0}^{1} \frac{d x}{x^{2}+1} \quad S_{4}=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& h=\frac{1-0}{4}=\frac{1}{4} \quad x_{0}=0, x_{1}=\frac{1}{4}, x_{2}=\frac{1}{2}, x_{3}=\frac{3}{4}, x_{4}=1 \\
& f\left(x_{0}\right)=1, f\left(x_{1}\right)=\frac{16}{17}, f\left(x_{2}\right)=\frac{4}{5}, f\left(x_{3}\right)=\frac{16}{25}, f\left(x_{4}\right)=\frac{1}{2} \\
& S_{2}(f)=\frac{1 / 4}{3}\left[1+4 \cdot \frac{16}{17}+2 \cdot \frac{4}{5}+4 \cdot \frac{16}{25}+\frac{1}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{12}\left[1+\frac{64}{17}+\frac{8}{5}+\frac{64}{25}+\frac{1}{2}\right]=\frac{1}{12} \cdot \frac{8011}{850} \\
& =0.7854
\end{aligned} \quad \begin{aligned}
& \operatorname{Rel}\left(S_{4}(f)\right)=0.0000076 .5=7.65 \cdot 10^{-6}
\end{aligned}
$$

