March 22 Math 2335 sec 51 Spring 2016

Section 5.1: Numerical Integration, the Trapezoid and Simpson
Rules

Our goal is to evaluate a definite integral

I(f) = /ab f(x) dx

We may recall the Fundamental Theorem of Calculus tells us

/ ’ f(x) dx = F(b) — F(a)

provided F(x) is any anti-derivative of f(x).
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Trapezoid Rule (one trapezoid on [a, b])

b
[Pt ax = S(b—a)[f(b) + f(a)

We'll call the right side T;(f), and we can write

b
/ f(x) dx ~ Ty(f).

The trapezoid rule with one interval is given by

/ f(x) dx ~ 3 (b~ a)[£(b) + (&) = T (7).
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Figure: lllustration of the Trapezoid with one interval to approximate an
integral.
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Example

Find the approximation T;(f)" for the integral. Compute the error and
relative error.
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"The value is /(f) = ¥ erf(0.1) ~ 0.09967.
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Multiple Subintervals
We can expect to get a better approximation by dividing [a, b] into
several subintervals, and using a trapezoid on each.
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a=xg, x, X, b=x3

Figure: lllustration of the Trapezoid rule with three sub-intervals to
approximate an integral.
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Trapezoid Rule w/ n Sub-intervals

We consider an equally spaced partition of [a, b]
a=Xo<Xxy<---<xp=b

where
b—a

X=Xy +jh, and h=

By properties of integrals
o
b Xq Xo Xn”
/ f(x)dx = f(x) dx + / f(x)dx +---+ / f(x) dx
a Xo Xq X

'd

n—1
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Trapezoid Rule w/ n Sub-intervals

Using T4 on the interval [x;_4, X;] gives

[ 00dxx Ti(h) = J1t0-1) + o)L

—1

Use this to show that

I(f) ~ g[f(xo) + 2f(xq) + 2f(x2) + - - - + 2f(Xn—1) + f(Xn)]

h X, X X3 Xn
j#max : f
[~

Xo X
X, L an
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Trapezoid Rule w/ n Sub-intervals

If [a, b] is divided into n equally spaced subintervals of length
h = (b— a)/n, then I(f) = T,(f) where

To(f) = g[f(xo) +2f(x1) + 2f(x2) + - - + 2F(Xn_1) + F(xn)]

The T stands for "Trapezoid Rule” and the subscript n indicates the
number of subintervals.

PLCDJL Xo= 0\) )(J: Xo"‘\)t\ 'J-_lJ..Uy\
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Example
Approximate /(f) with T>(f) and T4(f) where

T dx
/(f)_/o x2 + 1

Compare the answers to the exact solution /(f) = 7 (recall T;(f) = %).

I, (f) - h_L [«%q,)* 2€w) + £00))
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Simpson’s Rule

Another way to improve on T; would be to use a higher degree

polynomial—say P» instead of P;. (Recall that P, requires three
nodes.)

Special Case:

Consider f(x) defined on [—h, h] with the three nodes xo = —h, x; =0,
and xo = h. We have

Pa(x) = f(x0)Lo(x) + f(x1)L1 (x) + f(x2)La(x)

B > .2
= 1 I o))y O
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Show that for Ly(x) = x(x — h)/(2h?) that

h
h
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?It can be shown that [, La(x)}= 2 as well.
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Show that for L;(x) = (h? — x?)/(h?) that

h
/ Li(x)dx = —-
~h
h
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Simpson’s Rule

We have [, Lo(x)dx = 7 La(x)dx = h/3and [", Ly(x)dx = 4h/3
so that

h h h
:/ f(x)dxz/ Pa(x) dx = Z[f(~h) + 4£(0) + (h)]
—h —h

Note that the right hand side is

g[f(xo) + 4f(x1) + f(x2)] = Sa(f).

The ”S” stands for Simpson’s rule, and the subscript 2 indicates that
there are two subintervals.
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Simpson’s Rule S, on [a, b]

For I(f) = [2 f(x) dx, let

Xo = a, x1:aJ2rb, Xo =b, and h:b;a.

Then

I(f) = Sa(f) = g[f(xo) + 4f(x1) + f(x2)]

_ g’ [f(a)+4f<a;b> +f(b)] .
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S, lllustrated
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Figure: lllustration of Simpson’s rule with two sub-intervals to approximate an
integral.
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Example

Approximate /(f) with Sy(f) and compare (compute error and relative
error) the result to the true answer 7 where
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RA(s,(6)) = 0.002%

Recell RO (T, () = 00033
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Simpson’s Rule with n Subintervals

The number n must be even.

Divide [a, b] into n equal subintervals. Set

h= , Xo=a Xx=a+jh, j=1,...,n—1 and xp=0b.

Then I(f) = Sy(f) where

Snlf) = Do) +41( ) O - 1F(xe)+41(x5) () +

+o g[f(XnZ) + 4f(Xn_1) + f(xn)]-
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Simpson’s Rule with n Subintervals

Solf) = S (0)+41( ) O g 1F(x2)+47(x5) () +

+-- g[f(Xng) + 4f(Xp—1) + f(xn)]-
Note that the coefficients of f(xo) and f(x,) will be
1.
The coefficients for even numbered nodes f(xz), f(x4), etc. will be
2.
And coefficients for odd numbered nodes f(x1), f(x3), etc. will be

4.
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Simpson’s Rule with n Subintervals

Sn(f) = g[f(xo) +4f(x1) + 2f(x2) + 4F(Xg) + 2f(xa)+

+oo 4 2f(Xn_2) + 4f(Xp—1) + f(xn)]-
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Example

Approximate /(f) with S4(f) and compare the result to the true answer
7 Where

1 h
I(f) = /0 x2d—|)i 1 Sy 3 [‘C(X"‘ 48w + 2€ 0y U L) ¢ \C(Yﬂ]
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Ru (5.0)) = 0.00000 (5 = 3.5 15"
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