March 22 Math 3260 sec. 56 Spring 2018

Section 4.4: Coordinate Systems

Definition: (Coordinate Vectors) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} where these entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.

We'll use the notation

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=[\mathbf{x}]_{\mathcal{B}}
$$

Coordinates in \mathbb{R}^{n}

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

where the matrix

$$
\begin{aligned}
P_{\mathcal{B}} & =\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] . \\
\vec{X} & =P_{B}\left[\begin{array}{ll}
\vec{x}]_{B}
\end{array}\right.
\end{aligned}
$$

Example
Let $\mathcal{B}=\left\{\underset{5_{1}}{\left[\begin{array}{l}2 \\ 1 \\ 5_{2}\end{array}\right]},\left[\begin{array}{c}-1 \\ 1 \\ \zeta_{2}\end{array}\right]\right\}$. Determine the matrix $P_{\mathcal{B}}$ and its inverse.

$$
P_{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right], \quad P_{Q}^{-1}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]
$$

Use this to find
(a) the coordinate vector of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$

$$
\left[\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]_{B}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(b) the coordinate vector of $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\left[\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]_{B}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(c) a vector \mathbf{x} whose coordinate vector is $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
\vec{x}=P_{B}[\vec{x}]_{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Figure: \mathbb{R}^{2} shown using elementary basis $\{(1,0),(0,1)\}$ and with the alternative basis $\{(2,1),(-1,1)\}$.

Theorem: Coordinate Mapping

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one to one mapping of V onto \mathbb{R}^{n}.

Remark: When such a mapping exists, we say that V is isomorphic to \mathbb{R}^{n}. Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^{n}.

Example
Use coordinate vectors to determine if the set $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ is linearly dependent or independent in \mathbb{P}_{2}.

$$
\mathbf{p}(t)=1-2 t^{2}, \quad \mathbf{q}(t)=3 t+t^{2}, \quad \mathbf{r}(t)=1+t
$$

we con use the standard basis $\varepsilon=\left\{1, t, t^{2}\right\}$ in this order.

$$
[\vec{p}]_{\varepsilon}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad[\vec{q}]_{\varepsilon}=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right] \quad[\vec{r}]_{\varepsilon}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

We con use a matrix to determine if the coordinate vectors are lin. independent.

$$
A=\left[\begin{array}{lll}
{[\vec{p}]_{\varepsilon}} & {[\vec{q}]_{\varepsilon}} & {[\vec{r}]_{\varepsilon}}
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & 1 \\
-2 & 1 & 0
\end{array}\right]
$$

we con use th

$$
\begin{aligned}
\operatorname{det}(A) & =1\left|\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right|-0|\cdots|+1\left|\begin{array}{cc}
0 & 3 \\
-2 & 1
\end{array}\right| \\
& =-1+6=5 \neq 0
\end{aligned}
$$

The columns of A are lime. independent. Hence $\{\vec{p}, \vec{q}, \vec{r}\}$ is lin, independent in \mathbb{P}_{2}.

Section 4.5: Dimension of a Vector Space
Theorem: If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set of vectors in V containing more than n vectors is linearly dependent.

We already know that a set of vectors (in \mathbb{R}^{n}) with more vectors than entries in ead vector is l in. dependant. This is an extension of that result.

Dimension

Corollary: If vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then every basis of V consist of exactly n vectors.

Definition: If V is spanned by a finite set, then V is called finite dimensional. In this case, the dimension of V

$$
\operatorname{dim} V=\text { the number of vectors in any basis of } V \text {. }
$$

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero-i.e.

$$
\operatorname{dim}\{\mathbf{0}\}=0 .
$$

If V is not spanned by a finite set ${ }^{1}$, then V is said to be infinite dimensional.
${ }^{1} C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Examples
(a) Find $\operatorname{dim}\left(\mathbb{R}^{n}\right)$.

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

(b) Determine $\operatorname{dim} \operatorname{Col} A$ where $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 0 & -1\end{array}\right] \cdot{ }^{\text {two }}$ pod colum A basis for $\operatorname{col} A$ is $\left\{\begin{array}{l}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ -1\end{array}\right]\right\} \\ \text { 2vectors }\end{array}\right.$

$$
\operatorname{dim} \operatorname{col} A=2
$$

Some Geometry in \mathbb{R}^{3}
Give a geometric description of subspaces of \mathbb{R}^{3} of dimension
(a) zero This is $\{\overrightarrow{0}\}$. The origin.
(b) one must b of the form $\operatorname{spon}\{\vec{l}\}$, for $\vec{u} \neq \overrightarrow{0}$. A line through the origin
(c) two must be soon $\{\vec{u}, \vec{v}\}$ with \vec{u}, \vec{v} lin. independent. A ploce containing the origin
(d) three All of \mathbb{R}^{3}

Subspaces and Dimension

Theorem: Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Theorem: Let V be a vector space with $\operatorname{dim} V=p$ where $p \geq 1$. Any linearly independent set in V containing exactly p vectors is a basis for V. Similarly, any spanning set consisting of exactly p vectors in V is necessarily a basis for V.

Column and Null Spaces

Theorem: Let A be an $m \times n$ matrix. Then $\operatorname{dim} \operatorname{Nul} A=$ the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$,
and
$\operatorname{dim} \operatorname{Col} A=$ the number of pivot positions in A.

Example
Find the dimensions of the null and columns spaces of the matrix A.
not pict column x_{3} would be the only Sone variable for $A \vec{x}=\overrightarrow{0}$

$$
\operatorname{dim} N u l A=1
$$

one tree variates for $A \vec{x}=\overrightarrow{0}$
$\operatorname{dim} \operatorname{col} A=3 \quad 3$ pivot columns.

