March 22 Math 3260 sec. 56 Spring 2018

Section 4.4: Coordinate Systems

Definition: (Coordinate Vectors) Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be an ordered basis of the vector space *V*. For each **x** in *V* we define the **coordinate** vector of **x** relative to the basis \mathcal{B} to be the unique vector ($c_1, ..., c_n$) in \mathbb{R}^n where these entries are the weights $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

We'll use the notation

$$\begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{bmatrix} = [\mathbf{x}]_{\mathcal{B}}.$$

Coordinates in \mathbb{R}^n

Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be an ordered basis of \mathbb{R}^n . Then the change of coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

where the matrix

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n].$$

March 20, 2018

2/53

 $\vec{X} = P_{\alpha}[\vec{X}]_{\alpha}$

Example Let $\mathcal{B} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$. Determine the matrix $P_{\mathcal{B}}$ and its inverse. $P_{\mathbf{g}} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, P_{\mathbf{g}}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$ Use this to find (a) the coordinate vector of $\begin{vmatrix} 2 \\ 1 \end{vmatrix}$ $\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

March 20, 2018 3 / 53

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(b) the coordinate vector of
$$\begin{bmatrix} -1\\1 \end{bmatrix}$$

$$\begin{bmatrix} \begin{pmatrix} \cdot \\ 1 \end{bmatrix}_{\mathcal{B}} = \frac{1}{3} \begin{bmatrix} 1 & 1\\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1\\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0\\3 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$$

(c) a vector **x** whose coordinate vector is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

$$\vec{X} = \mathcal{P}_{\mathcal{G}}\left[\vec{x}\right]_{\mathcal{G}} = \begin{bmatrix} z & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

■ ▶ 《 ■ ▶ ■ つへで March 20, 2018 4/53

イロト イヨト イヨト イヨト

Figure: \mathbb{R}^2 shown using elementary basis $\{(1,0), (0,1)\}$ and with the alternative basis $\{(2,1), (-1,1)\}$.

(a)

Theorem: Coordinate Mapping

Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be an ordered basis for a vector space *V*. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a **one to one** mapping of *V* **onto** \mathbb{R}^n .

Remark: When such a mapping exists, we say that *V* is **isomorphic** to \mathbb{R}^n . Properties of subsets of *V*, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^n .

Example

Use coordinate vectors to determine if the set $\{p, q, r\}$ is linearly dependent or independent in \mathbb{P}_2 .

$$\mathbf{p}(t) = 1 - 2t^{2}, \quad \mathbf{q}(t) = 3t + t^{2}, \quad \mathbf{r}(t) = 1 + t$$
We can use the standard basis $\mathcal{E} = \{1, t, t^{2}\}$ in this order.
$$\begin{bmatrix} \vec{p} \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad \begin{bmatrix} \vec{q} \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} \vec{r} \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
We can use a matrix to determine if the coordinate vectors are fine independent.
$$U = A = \begin{bmatrix} \vec{p} \end{bmatrix}_{\mathcal{E}} \quad \begin{bmatrix} \vec{q} \end{bmatrix}_{\mathcal{E}} \quad \begin{bmatrix} \vec{r} \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} \mathbf{r} \end{bmatrix}_{\mathcal{E}}$$

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$$
 We can use the determinant.

$$dit(A) = 1 \begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix} - 0 \begin{vmatrix} \cdots & |e_1 \end{vmatrix} \begin{vmatrix} 0 & 3 \\ -2 & 1 \end{vmatrix}$$
$$= -1 + 6 = 5 \neq 0$$
The column of A are lin. independent.
Hence {\$\overline{p}, \overline{q}, \overline{r}\$} is lin, independent in \$P_2\$.

March 20, 2018 8 / 53

୬ବଙ

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣

Section 4.5: Dimension of a Vector Space

Theorem: If a vector space *V* has a basis $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$, then any set of vectors in *V* containing *more than n vectors* is linearly dependent.

イロト 不得 トイヨト イヨト 二日

Dimension

Corollary: If vector space *V* has a basis $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$, then every basis of *V* consist of exactly *n* vectors.

Definition: If V is spanned by a finite set, then V is called **finite dimensional**. In this case, the dimension of V

 $\dim V =$ the number of vectors in any basis of V.

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero—i.e.

$$\dim\{\mathbf{0}\}=0.$$

If V is not spanned by a finite set¹, then V is said to be **infinite** dimensional.

 $^{1}C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space $\mathbb{P} \to \mathbb{R} \to \mathbb{R}$

Examples The studer d basis for \mathbb{R}^n (a) Find dim (\mathbb{R}^n) . hes a vectors $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$.

$$\dim(\mathbb{R}^n)$$
 = n

(b) Determine dim Col A where
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & -1 \end{bmatrix}$$
. $two ot produces A$
A basis for Col A is $\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \end{bmatrix}\}$
zyectors

Jin Col A= 2

March 20, 2018 11 / 53

<ロ> <四> <四> <四> <四> <四</p>

Some Geometry in \mathbb{R}^3

Give a geometric description of subspaces of \mathbb{R}^3 of dimension (a) zero This is $\{\vec{0}\}$. The original

イロト イポト イヨト イヨト

March 20, 2018

12/53

Subspaces and Dimension

Theorem: Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

 $\dim H \leq \dim V$.

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Theorem: Let *V* be a vector space with dim V = p where $p \ge 1$. Any linearly independent set in *V* containing exactly *p* vectors is a basis for *V*. Similarly, any spanning set consisting of exactly *p* vectors in *V* is necessarily a basis for *V*.

Column and Null Spaces

Theorem: Let *A* be an $m \times n$ matrix. Then

dim Nul*A* = the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$, and dim Col*A* = the number of pivot positions in *A*.

March 20, 2018 14 / 53

Example

Find the dimensions of the null and columns spaces of the matrix A.

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ -3 & 1 & -7 & -1 \\ 3 & 0 & 6 & 1 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & z & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T \xrightarrow{\text{pivot}} T \xrightarrow{\text{columns}}$$

$$\text{not pivot (slumn)}$$

$$X_3 \text{ would be the only}$$

$$dim NULA = 1$$

$$\text{one free vancher for } A\vec{x} = \vec{0}$$

$$dim (cl A = 3 \qquad 3 \text{ pivot columns}.$$

March 20, 2018

15/53