March 23 Math 1190 sec. 62 Spring 2017

Section 4.4: Local Extrema and Concavity

Let’s start with some review question inspired by this Thursday’s quiz!
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Question

The limit )I(m sin(rx) gives rise to
< (w)=o
@the indeterminate form 3. ovd
Qn 1 =0

(b) the indeterminate form 2.
(c) the indeterminate form oo — oc.
(d) no indeterminate form, the limit is 1.
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Question

. sin(wx
Evaluate lim g
x—1 In x
i osin(wx)
(a) )I(m Inx
i osin(wx)
)l(m mx — T
i osin(wx)
(€) lim S =00

(d) Ilm Sin(ﬂ'X) —

x—1

(use any applicable technique)
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Question

The critical numbers of the function f(x) = x3 — 12x are

(a)) —2 and 2. Plage 312 = 3 (5x-4)
(b) —2, 0, and —2. £l 15 vmdhind -
(c) nothing since f has no critical numbers. Fo-0

(d) 0and 4. 3t 4= 0

= ')O-L:l.f = )0‘-—&2,
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Question

Determine the absolute maximum and absolute minimum values of
f(x) = x3 — 12x on the interval [0, 3].

C\uolq,
(a) The max is 15, and the min is -12. \0(6) T 0 & n~ov
(b) The max is 0, and the min is —9. 2y =1, €~7
p(?) = -Q)

@ The max is 0, and the min is —16.

(d) The max is 0, and there is no absolute minimum.
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Our Latest Theorems & Definitions

Theorem: First Derivative Test: Let f be continuous and suppose
that c is a critical number of f.

» If f' changes from— to + at ¢, then f has a local minimum at c.

» If f' changes from + to — at ¢, then f has a local maximum at c.

» If f does not change signs at ¢, then f does not have a local
extremum at c.

Definition: Concavity

Concave Up: If the graph of a function f lies above all of its tangent
lines over an interval /, then f is concave up on /.

Concave Down: If the graph of f lies below each of its tangent lines
on an interval /, f is concave down on /.
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Our Latest Theorems & Definitions

Theorem: (Second Derivative Test for Concavity)
Suppose f is twice differentiable on an interval /.

» If f”(x) > 0 on /, then the graph of f is concave up on /.

» If f/(x) < 0 on /, then the graph of f is concave down on /.

Definition: A point P on a curve y = f(x) is called an inflection point
if f is continuous at P and the concavity of f changes at P (from down
to up or from up to down).

A point where f”(x) = 0 would be a candidate for being an inflection
point.
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Example

Determine where the graph of f(x) = x* — 4x3 is concave up, where it

is concave down, and identify any x-values at which f has a point of
inflection.
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i) baea b Y domin bo (a0, 0 (0,2), (2,09)
£ (x) = \2x (x-2)
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Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema)
Suppose f'(¢) = 0 and that f” is continuous near c¢. Then

» if f/(c) > 0, f takes a local minimum at c,

» if f/(c) < 0, then f takes a local maximum at c.

If f’(c) = 0, then the test fails. f may or may not have a local extrema.
You can go back to the first derivative test to find out.
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Example: Consider f(x) = xIn x

f has one local extreme value. Find the local extreme value and

classify it as a local maximum or local minimum using the second
derivative test.

Tue domow of £ 15 (o,”).

Fng TR #'C
P'ro= Vnx = x % Dese + \
.P' ¥ dold?d on (0, p0)
= Dax= -\

Flroz0 =2 fax +1 =0
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Let’s Analyze a Function

Consider the function f(x) = xe3%. Let’s determine

(a) the intervals on which f is increasing and decreasing,

(b) the intervals on which f is concave up and concave down,
(c) identify critical points and classify any local extrema, and
(d) identify any points of inflection.
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Question
Find the first and second derivatives of f(x) = xe3*. 5
3x X
Pra-le+xe 3

(@) f(x)=36e%, f"(x)=9e* S (1) &
3
‘P”(y) : 32)( + \- ;x-?wm(c .3
, - 3 " — 3x -
(b)) f(x)=(1+3x)e>*, f’(x)=(6+9x)e c (s 0"

€) F(x)=(1+3x)e>, f’(x)= (1+3x)e>

d) f(x) =e¥+3x2e?*, f"(x) = 3e>*+6xe®*+6x3e
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Question

We found for f(x) = xe® that f/(x) = (1 + 3x)e>*. The critical
number(s) of f are

v Au\-\o‘.\,‘ O‘L <F \S ('P".*".

(a) %Only P s alwegs Jdebind

3%
(b) §and 0 fonmo = (em e =0

3y
1 = =
@3 only |+3x =0 of & =0

(d) —%and 0 *

wl-
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Question

We found for f(x) = xe®* that f/(x) = (1 + 3x)e®*. And f has one
critical number —%. f has the increasing/decreasing behavior

is decreasing on (—oo, —4) and increasing on (—3, cc)

(b) fisincreasing on (—oco, —3) and decreasing on (-3, o)

(c) fisincreasing on (—oo, c0)

(d) fis decreasing on (—oo, ) !
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Question

We found for f(x) = xe® that f”(x) = 3(2 + 3x)e®**. And f”(x) has one
root —%. f has the concavity

(a) fis concave up on (—oco, —2) and concave down on (-2, co)

(b) )f is concave down on (—oo, —2) and concave up on (—%, co)

3, X

(c) fis concave up on (—oo, c0)

(d) fis concave down on (—oo, c0) 2
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Figure: Plot of y = xe3*.
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f(x) = xe¥
f'(x) = (1 + 3x)e®* and /(x) = 3(2 + 3x)e®*. f has one critical

number —1/3. Observe how it can be classified as a local minimum.
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Section 4.8: Antiderivatives; Differential Equations

We have a bunch of rules for taking derivatives, now we’ll think about
the other direction—if we know f’(x), can we find f?

Definition: A function F is called an antiderivative of f on an interval /
if
F'(x) = f(x) forall xin I.

For exompla € -C()D‘Z’( ) O 0“*“5“’;“’“\‘“'1 <

Yoo = x
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General Antiderivative

Recall: The MVT told us that if f'(x) = g’(x) on an interval, then they
are equal except up to an added constant—i.e. f(x) = g(x) + C for
some constant C. We’ll use this again.

Theorem: If F is any antiderivative of f on an interval /, then the most
general antiderivative of f on / is

F(x)+ C where C is an arbitrary constant.

-2 u-c'A Rowe )(7'+C
€.9. o~ 6= ¢x
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Find the most general antiderivative of f.

(i) f(x)=26*, |=(—o0,)
(2
on 01\\""(}, e, \ < g 2
S. Mo mosk g((md .S F()&'-e-rc
@o.r (oV\S} Ovs'\' C .
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Question: Find the most general antiderivative of f.

(i) f(x) =sinx, [=(—o0,00)

(@) F(x)=cosx

(b) F(x)=cosx+C

() ) F(x) = —cosx+C
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Question: Find the most general antiderivative of f.
(iv) f(x)=secxtanx, [= (—g, g)
(@) F(x)=secx

F(x) =secx+C

(c) F(x)=tanx+C
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Find the most general antiderivative of

f(x)=x", wheren=1,23,...
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Some general results’:

(See the table on page 330 in Sullivan & Miranda for a more
comprehensive list.)

| Function [ Particular Antiderivative || Function | Particular Antiderivative
cf(x) cF(x) cos x sin x
f(x) + g(x) F(x) + G(x) sin x —Ccos X
x", n# —1 Xn”:; sec® x tan x
1 In|x| CSC X cot X —csc X
o tan~" x 1‘42 sin™! x

'We'll use the term particular antiderivative to refer to any antiderivative that has no
arbitrary constant in it.
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