March 23 Math 1190 sec. 62 Spring 2017

Section 4.4: Local Extrema and Concavity

Let's start with some review question inspired by this Thursday's quiz!

March 22, 2017 1 / 37

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The limit $\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x}$ gives rise to

(a) the indeterminate form $\frac{0}{0}$.

- (b) the indeterminate form $\frac{\infty}{\infty}$.
- (c) the indeterminate form $\infty \infty$.

(d) no indeterminate form, the limit is 1.

イロト 不得 トイヨト イヨト 二日

March 22, 2017

 $\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x}$ (use any applicable technique) Evaluate Use l'H rule $\int \frac{f(x)}{x + 1} = \frac{Cos(\pi x) \cdot \pi}{\frac{1}{c}} = \frac{Cos(\pi) \cdot \pi}{\frac{1}{1}}$ (a) $\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x} = 1$ (b) $\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x} = -\pi$ $\overline{\Psi}_{-} = \frac{\overline{\Psi}(1-)}{1} = -$ (c) $\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x} = \infty$

> March 22, 2017

(d)
$$\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x} = 0$$

The critical numbers of the function $f(x) = x^3 - 12x$ are

(a)
$$-2$$
 and 2.
(b) -2 , 0, and -2 .
 $f'(x) = 3x^2 - 12 = 3(x^2 - 4)$
 $f'(x) = 3x^2 - 12 = 3(x^2 - 4)$
 $f'(x) = 3x^2 - 12 = 3(x^2 - 4)$

(c) nothing since *f* has no critical numbers.

(d) 0 and 4.

f'(x) = 0 $3(x^2-4)=0$ $\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$

March 22, 2017

Determine the absolute maximum and absolute minimum values of $f(x) = x^3 - 12x$ on the interval [0, 3].

(a) The max is 15, and the min is -12.

(b) The max is 0, and the min is -9.

The max is 0, and the min is -16.

Check $f(0) = 0 \in max$ $f(z) = -16 \in min$ f(3) = -9

(d) The max is 0, and there is no absolute minimum.

Our Latest Theorems & Definitions

Theorem: First Derivative Test: Let *f* be continuous and suppose that *c* is a critical number of *f*.

- If f' changes from to + at c, then f has a local minimum at c.
- If f' changes from + to at c, then f has a local maximum at c.
- If f' does not change signs at c, then f does not have a local extremum at c.

Definition: Concavity

Concave Up: If the graph of a function *f* lies above all of its tangent lines over an interval *I*, then *f* is concave up on *I*.

Concave Down: If the graph of *f* lies below each of its tangent lines on an interval *I*, *f* is concave down on *I*.

March 22, 2017

Our Latest Theorems & Definitions

Theorem: (Second Derivative Test for Concavity) Suppose *f* is twice differentiable on an interval *I*.

- If f''(x) > 0 on *I*, then the graph of *f* is concave up on *I*.
- If f''(x) < 0 on *I*, then the graph of *f* is concave down on *I*.

Definition: A point *P* on a curve y = f(x) is called an **inflection point** if *f* is continuous at *P* and the concavity of *f* changes at *P* (from down to up or from up to down).

A point where f''(x) = 0 would be a candidate for being an inflection point.

イロト 不得 トイヨト イヨト ヨー ろくの

Example

Determine where the graph of $f(x) = x^4 - 4x^3$ is concave up, where it is concave down, and identify any *x*-values at which *f* has a point of inflection.

we'll do a sign analysis of
$$f''$$
. Poncin of
 $f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$
 $f''(x) = 12x^2 - 24x = 12x(x-2)$
 $f'' : s$ defined averywhere
 $f''(x) = 0 \implies 12x(x-2) = 0$
 $\implies x=0$ or $x-2=0 \implies x=2$

March 22, 2017 8 / 37

well bruck the domain into (-00,0), (0,2), (2,00).

f''(x) = 12x (x-2)

test pl. -1
$$f''(-1) = 12(-1)(-1-2)$$

1 $f''(1) = 12(-1)(-1-2)$
3 $f''(3) = 12(3)(3-2)$

March 22, 2017 9 / 37

(日)

Concavity and Extrema:

- **Theorem:** (Second Derivative Test for Local Extrema) Suppose f'(c) = 0 and that f'' is continuous near c. Then
 - if f''(c) > 0, f takes a local minimum at c,
 - if f''(c) < 0, then f takes a local maximum at c.

If f''(c) = 0, then the test fails. f may or may not have a local extrema. You can go back to the first derivative test to find out.

> March 22, 2017

Example: Consider $f(x) = x \ln x$

f has one local extreme value. Find the local extreme value and classify it as a local maximum or local minimum using the second derivative test. The density of f is (\circ, ∞) .

First cr.t. #'s $f'(x) = |\cdot \ln x + x \cdot \frac{1}{x} = \ln x + |$ $f'(x) = 0 \quad (0, \infty),$ $f'(x) = 0 \quad \Rightarrow \quad \ln x + | = 0 \quad \Rightarrow \quad \ln x = -|$ $e^{\ln x} = e^{-1} \quad \Rightarrow \quad x = e^{1} \quad \text{our only critical } \#$

イロト 不得 トイヨト イヨト ヨー ろくの

$$f''(x) = \frac{1}{x} \qquad \text{crit. } \pm e^{-1}$$

$$2^{nd} \text{ der. } \text{ test}$$

$$f''(e^{-1}) = \frac{1}{e^{n}} = e^{1} = e$$

$$f''(e^{-1}) > 0$$

$$f \text{ is concours up } e^{-1} x = e^{1}, f \text{ tokes}$$

$$a \text{ locd min there },$$
The local minimum value is $f(e^{-1}) = e^{1} \ln e^{1} = -e^{1}$

▲□▶ < @▶ < ≧▶ < ≧▶ ≧ シ ♀ ♡ へ ♡ March 22, 2017 13 / 37

▲□▶ < @▶ < ≧▶ < ≧▶ ≧ シ ♀ ♡ へ ♡ March 22, 2017 14/37

Let's Analyze a Function

Consider the function $f(x) = xe^{3x}$. Let's determine

- (a) the intervals on which *f* is increasing and decreasing,
- (b) the intervals on which f is concave up and concave down,
- (c) identify critical points and classify any local extrema, and
- (d) identify any points of inflection.

イロト 不得 トイヨト イヨト 二日

Find the first and second derivatives of $f(x) = xe^{3x}$. f'(x) = 1. e + x e. 3 (a) $f'(x) = 3e^{3x}$, $f''(x) = 9e^{3x}$ $= (1+3x) e^{3x}$ $f''(x): 3e' + 1.e' \cdot 3 + xe' \cdot 3^{3x}$ ((b)) $f'(x) = (1+3x)e^{3x}$, $f''(x) = (6+9x)e^{3x}$ $= (6 + 9x)e^{3x}$ (c) $f'(x) = (1+3x)e^{3x}$, $f''(x) = (1+3x)e^{3x}$

イロト イヨト イモト イモト 一日

March 22, 2017

16/37

(d) $f'(x) = e^{3x} + 3x^2 e^{2x}$, $f''(x) = 3e^{3x} + 6xe^{2x} + 6x^3 e^{x}$

We found for $f(x) = xe^{3x}$ that $f'(x) = (1 + 3x)e^{3x}$. The critical number(s) of f are The domain of fis (-00,00) f' is always defined (a) $\frac{1}{3}$ only $f'(x)=0 \Rightarrow (1+3x) = 0$ (b) $\frac{1}{3}$ and 0 1+3x=0 or B=0 $-\frac{1}{3}$ only (c) no sola. $\chi = \frac{-1}{2}$ (d) $-\frac{1}{3}$ and 0 -112

March 22, 2017 17 / 37

We found for $f(x) = xe^{3x}$ that $f'(x) = (1 + 3x)e^{3x}$. And *f* has one critical number $-\frac{1}{3}$. *f* has the increasing/decreasing behavior

(a) f is decreasing on
$$\left(-\infty,-\frac{1}{3}\right)$$
 and increasing on $\left(-\frac{1}{3},\infty\right)$

(b) f is increasing on $\left(-\infty,-\frac{1}{3}\right)$ and decreasing on $\left(-\frac{1}{3},\infty\right)$

- (c) *f* is increasing on $(-\infty,\infty)$
- (d) f is decreasing on $(-\infty,\infty)$

March 22, 2017

We found for $f(x) = xe^{3x}$ that $f''(x) = 3(2+3x)e^{3x}$. And f''(x) has one root $-\frac{2}{3}$. *f* has the concavity

(a) *f* is concave up on
$$(-\infty, -\frac{2}{3})$$
 and concave down on $(-\frac{2}{3}, \infty)$
(b) *f* is concave down on $(-\infty, -\frac{2}{3})$ and concave up on $(-\frac{2}{3}, \infty)$

(c) *f* is concave up on $(-\infty,\infty)$

(d) f is concave down on $(-\infty,\infty)$

∃ ► < ∃ ►</p>
March 22, 2017

19/37

2

ヘロト 人間 とくほとくほう

 $f(x) = x e^{3x}$

 $f'(x) = (1 + 3x)e^{3x}$ and $f''(x) = 3(2 + 3x)e^{3x}$. *f* has one critical number -1/3. Observe how it can be classified as a local minimum.

1 st der. test

$$f'(x) < 0$$
 to the left and $f'(x) > 0$
to the right of $-\frac{1}{3}$.
We have a lord min.
2nd der. test.
 $f''(\frac{1}{3}) = 3(2+3(\frac{1}{3}))e^{-1}$
 $= 3(1)e^{-1} > 0$
We have a lord minimum.
March 22, 2017 21/33

Section 4.8: Antiderivatives; Differential Equations

We have a bunch of rules for taking derivatives, now we'll think about the other direction—if we know f'(x), can we find f?

Definition: A function *F* is called an antiderivative of *f* on an interval *I* if

$$F'(x) = f(x)$$
 for all x in I.

For example if f(x) = 2x, an articlerivating is $F(x) = x^2$.

March 22, 2017 22 / 37

General Antiderivative

Recall: The MVT told us that if f'(x) = g'(x) on an interval, then they are equal except up to an added constant—i.e. f(x) = g(x) + C for some constant *C*. We'll use this again.

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C where C is an arbitrary constant.

March 22, 2017

Find the most general antiderivative of *f*.

(i)
$$f(x) = 2e^{2x}$$
, $I = (-\infty, \infty)$
on ontider. is e^{2x}
s. the most general is $F(x) = e^{2x} + C$
for constant C.

(ii)
$$f(x) = \frac{1}{x}, \quad I = (0, \infty)$$

 $F(x) = \ln x + C$

March 22, 2017 24 / 37

2

イロン イ理 とく ヨン イヨン

Question: Find the most general antiderivative of *f*.

(iii)
$$f(x) = \sin x$$
, $I = (-\infty, \infty)$

(a)
$$F(x) = \cos x$$

(b)
$$F(x) = \cos x + C$$

(c)
$$F(x) = -\cos x + C$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで March 22, 2017 25/37 Question: Find the most general antiderivative of *f*.

(iv)
$$f(x) = \sec x \tan x$$
, $I = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(a) $F(x) = \sec x$

(b)
$$F(x) = \sec x + C$$

(c) $F(x) = \tan x + C$

March 22, 2017 26 / 37

イロト 不得 トイヨト イヨト 二日

Find the most general antiderivative of

$$f(x) = x^{n}, \text{ where } n = 1, 2, 3, \dots$$
Let's guess that $F(x) = A x^{k}$ for some constant
 $A \text{ and power } k$,
we need $F'(x) = f(x)$
 $A_{k} x^{k-1} = x^{n} = 1 x^{n}$
Matching powers and coefficients
 $k-1 = n \implies k=n+1$

March 22, 2017 27 / 37

イロト イロト イヨト イヨト 一日

and
$$Ak = 1 \Rightarrow A(n+1) = 1$$

 $A = \frac{1}{n+1}$

The most general is
$$\frac{1}{n+1} \propto^{n+1} + C$$

Check:
$$1S \frac{d}{dx} \left(\frac{1}{nr_1} x^{n+1} + C \right) = x^n$$
?
 $\frac{d}{dx_0} \left(\frac{1}{n+1} x^{n+1} + C \right) = \frac{1}{n+1} (nr_1) x^{n+1-1} + O = x^n \sqrt{n}$

Some general results¹:

(See the table on page 330 in Sullivan & Miranda for a more comprehensive list.)

Function	Particular Antiderivative	Function	Particular Antiderivative
cf(x)	cF(x)	cos x	sin x
f(x) + g(x)	F(x) + G(x)	sin x	$-\cos x$
$x^n, n \neq -1$	$\frac{x^{n+1}}{n+1}$	sec ² x	tan x
$\frac{1}{x}$	$\ln x $	csc x cot x	$-\csc x$
1	1	1	· _1
$\frac{1}{x^2+1}$	tan"' x	$\frac{1}{\sqrt{1-x^2}}$	sin ⁻ ' x

¹We'll use the term particular antiderivative to refer to any antiderivative that has no arbitrary constant in it.