March 23 Math 1190 sec. 63 Spring 2017

Section 4.4: Local Extrema and Concavity

Let's start with some review question inspired by this Thursday's quiz!

Question

The limit $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln x}$ gives rise to
(a) the indeterminate form $\frac{0}{0}$.

$$
\begin{gathered}
\operatorname{Sin}(\pi)=0 \\
\text { ard } \\
\ln 1=0
\end{gathered}
$$

(b) the indeterminate form $\frac{\infty}{\infty}$.
(c) the indeterminate form $\infty-\infty$.
(d) no indeterminate form, the limit is 1 .

Question

Evaluate $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln x} \quad$ (use any applicable technique)

$$
\text { Use } \ell^{\prime} H \text { rule }
$$

(a) $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln x}=1$
(b) $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln x}=-\pi$

$$
\lim _{x \rightarrow 1} \frac{\operatorname{Cos}(\pi x) \cdot \pi}{\frac{1}{x}}=\frac{\operatorname{Cos}(\pi) \cdot \pi}{\frac{1}{1}}
$$

(c) $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln x}=\infty$

$$
=\frac{(-1) \pi}{1}=-\pi
$$

(d) $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln x}=0$

Question

The critical numbers of the function $f(x)=x^{3}-12 x$ are
(a) -2 and 2 .

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-12 \\
& =3\left(x^{2}-4\right)
\end{aligned}
$$

(b) $-2,0$, and -2 .

$$
f^{\prime} \text { is defined }
$$

(c) nothing since f has no critical numbers. ever pore
(d) 0 and 4 .

$$
\begin{aligned}
f^{\prime}(x)=0 \Rightarrow & 3\left(x^{2}-4\right)=0 \\
& x= \pm 2 .
\end{aligned}
$$

Question

Determine the absolute maximum and absolute minimum values of $f(x)=x^{3}-12 x$ on the interval $[0,3]$.

$$
f(0)=0 \operatorname{tax}^{\text {ax }}
$$

(a) The max is 15 , and the \min is -12 .
(b) The max is 0 , and the \min is -9 .

$$
f(2)=-16^{* i n}
$$

(c) The max is 0 , and the min is -16 .

$$
f(3)=-9
$$

(d) The max is 0 , and there is no absolute minimum.

Our Latest Theorems \& Definitions

Theorem: First Derivative Test: Let f be continuous and suppose that c is a critical number of f.

- If f^{\prime} changes from - to + at c, then f has a local minimum at c.
- If f^{\prime} changes from + to - at c, then f has a local maximum at c.
- If f^{\prime} does not change signs at c, then f does not have a local extremum at c.

Definition: Concavity

Concave Up: If the graph of a function f lies above all of its tangent lines over an interval I, then f is concave up on I.

Concave Down: If the graph of f lies below each of its tangent lines on an interval I, f is concave down on l.

Our Latest Theorems \& Definitions

Theorem: (Second Derivative Test for Concavity)
Suppose f is twice differentiable on an interval I.

- If $f^{\prime \prime}(x)>0$ on I, then the graph of f is concave up on I.
- If $f^{\prime \prime}(x)<0$ on I, then the graph of f is concave down on I.

Definition: A point P on a curve $y=f(x)$ is called an inflection point if f is continuous at P and the concavity of f changes at P (from down to up or from up to down).

A point where $f^{\prime \prime}(x)=0$ would be a candidate for being an inflection point.

Example
Determine where the graph of $f(x)=x^{4}-4 x^{3}$ is concave up, where it is concave down, and identify any x-values at which f has a point of inflection.

The domon of f is $(-\infty, \infty)$.
Well do a sign analysis on $f^{\prime \prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3) . \\
& f^{\prime \prime}(x)=12 x^{2}-24 x=12 x(x-2)
\end{aligned}
$$

$f^{\prime \prime}$ is defined everywhere.

$$
\begin{aligned}
f^{\prime \prime}(x)=0 & \Rightarrow \quad 12 x(x-2)=0 \\
& x=0 \quad \text { or } \quad x=2
\end{aligned}
$$

This divides our domain into the interuds

$$
\begin{aligned}
& (-\infty, 0),(0,2), \text { and }(2, \infty) . \\
& f_{0}^{\prime \prime}(x)=12 x(x-2) \\
& +\underbrace{}_{2}+\quad f_{2}^{\prime \prime}
\end{aligned}
$$

Test pts:

$$
\begin{aligned}
-1 & f^{\prime \prime}(-1)=12(-1)(-1-2) \\
1 & f^{\prime \prime}(1)=12(1)(1-2) \\
3 & f^{\prime \prime}(3)=12(3)(3-2)
\end{aligned}
$$

f is concaure up on $(-\infty, 0) \cup(2, \infty)$. f is concave down on $(0,2)$.
f has inflection points $C x=0$ and at $\quad x=2$.

Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema) Suppose $f^{\prime}(c)=0$ and that $f^{\prime \prime}$ is continuous near c. Then

- if $f^{\prime \prime}(c)>0, f$ takes a local minimum at c,
- if $f^{\prime \prime}(c)<0$, then f takes a local maximum at c.

If $f^{\prime \prime}(c)=0$, then the test fails. f may or may not have a local extrema. You can go back to the first derivative test to find out.

Example: Consider $f(x)=x \ln x$
f has one local extreme value. Find the local extreme value and classify it as a local maximum or local minimum using the second derivative test.

The domain of f is $(0, \infty)$.
Find crit, \#'s $\quad f^{\prime}(x)=1 \cdot \ln x+x \cdot \frac{1}{x}=\ln x+1$
f^{\prime} is defined every when e on $(0, \infty)$.

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow \ln x+1=0 \\
& \Rightarrow \ln x=-1 \Rightarrow e^{\ln x}=e^{-1} \Rightarrow x=e^{-1} \underset{\substack{\text { orr } \\
\text { ort } \\
\text { crit }}}{ }
\end{aligned}
$$

well use the $2^{\text {nd }}$ den test.

$$
f^{\prime \prime}(x)=\frac{1}{x}
$$

Plug the crit. $\#$ inte $f^{\prime \prime}(x)$

$$
\begin{aligned}
& f^{\prime \prime}\left(e^{-1}\right)=\frac{1}{e^{-1}}=e^{\prime}=e \\
& f^{\prime \prime}\left(e^{-1}\right)>0 \quad \text { Graph } \operatorname{concous}_{\text {con }} \text { e ep }
\end{aligned}
$$

f toves a loced minimun $\subset x=e^{-1}$.
The minimun volue is

$$
f\left(e^{-1}\right)=e^{-1} \ln e^{-1}=e^{-1}(-1)=\frac{-1}{e}
$$

Let's Analyze a Function

Consider the function $f(x)=x e^{3 x}$. Let's determine
(a) the intervals on which f is increasing and decreasing,
(b) the intervals on which f is concave up and concave down,
(c) identify critical points and classify any local extrema, and
(d) identify any points of inflection.

Question

Find the first and second derivatives of $f(x)=x e^{3 x}$.
(a) $f^{\prime}(x)=3 e^{3 x}, \quad f^{\prime \prime}(x)=9 e^{3 x}$

$$
\begin{aligned}
f^{\prime}(x) & =1 e^{3 x}+x e^{3 x} \cdot 3 \\
& =e^{3 x}(1+3 x)
\end{aligned}
$$

(b) $\begin{aligned} f^{\prime}(x)=(1+3 x) e^{3 x}, \quad f^{\prime \prime}(x)=(6+9 x) e^{3 x} \quad f^{\prime \prime \prime}(x) & =(6+9 x) e^{3 x} \\ & =3(2+3 x) e^{3 x}\end{aligned}$
(c) $f^{\prime}(x)=(1+3 x) e^{3 x}, \quad f^{\prime \prime}(x)=(1+3 x) e^{3 x}$
(d) $f^{\prime}(x)=e^{3 x}+3 x^{2} e^{2 x}, \quad f^{\prime \prime}(x)=3 e^{3 x}+6 x e^{2 x}+6 x^{3} e^{x}$

Question

We found for $f(x)=x e^{3 x}$ that $f^{\prime}(x)=(1+3 x) e^{3 x}$. The critical numbers) of f are
(a) $\frac{1}{3}$ only
(b) $\frac{1}{3}$ and 0
(C) $-\frac{1}{3}$ only

$$
f^{\prime}(x)=0 \Rightarrow(1+3 x) e^{3 x}=0
$$

$$
1+3 x=0 \quad \text { or } \quad e^{3 x}=0
$$

$$
x=\frac{-1}{3}
$$

(d) $-\frac{1}{3}$ and 0

Question

We found for $f(x)=x e^{3 x}$ that $f^{\prime}(x)=(1+3 x) e^{3 x}$. And f has one critical number $-\frac{1}{3}$. f has the increasing/decreasing behavior
(a) is decreasing on $\left(-\infty,-\frac{1}{3}\right)$ and increasing on $\left(-\frac{1}{3}, \infty\right)$
(b) f is increasing on $\left(-\infty,-\frac{1}{3}\right)$ and decreasing on $\left(-\frac{1}{3}, \infty\right)$
(c) f is increasing on $(-\infty, \infty)$
(d) f is decreasing on $(-\infty, \infty)$

$-\frac{1}{3}$

Question

We found for $f(x)=x e^{3 x}$ that $f^{\prime \prime}(x)=3(2+3 x) e^{3 x}$. And $f^{\prime \prime}(x)$ has one root $-\frac{2}{3}$. f has the concavity
(a) f is concave up on $\left(-\infty,-\frac{2}{3}\right)$ and concave down on $\left(-\frac{2}{3}, \infty\right)$
(b) f is concave down on $\left(-\infty,-\frac{2}{3}\right)$ and concave up on $\left(-\frac{2}{3}, \infty\right)$
(c) f is concave up on $(-\infty, \infty)$
(d) f is concave down on $(-\infty, \infty)$

Figure: Plot of $y=x e^{3 x}$.

$$
f(x)=x e^{3 x}
$$

$f^{\prime}(x)=(1+3 x) e^{3 x}$ and $f^{\prime \prime}(x)=3(2+3 x) e^{3 x}$. f has one critical number $-1 / 3$. Observe how it can be classified as a local minimum.

Crit $\#-\frac{1}{3}$

ftoker a lord minimum © $\frac{-1}{3}$
$2^{n d} d r$. test

$$
\begin{aligned}
f^{\prime \prime}\left(\frac{-1}{3}\right) & =3\left(2+3\left(\frac{-1}{3}\right)\right) e^{3\left(\frac{-1}{3}\right)} \\
& =3(2-1) e^{-1}=3 e^{-1}>0
\end{aligned}
$$

conc. up

Section 4.8: Antiderivatives; Differential Equations

We have a bunch of rules for taking derivatives, now we'll think about the other direction-if we know $f^{\prime}(x)$, can we find f ?

Definition: A function F is called an antiderivative of f on an interval $/$ if

$$
F^{\prime}(x)=f(x) \text { for all } x \text { in } I
$$

For example for $f(x)=2 x$, an ontidnivative is $F(x)=x^{2}$

$$
\text { because } \quad F^{\prime}(x)=f(x) \text {. }
$$

General Antiderivative

Recall: The MVT told us that if $f^{\prime}(x)=g^{\prime}(x)$ on an interval, then they are equal except up to an added constant-i.e. $f(x)=g(x)+C$ for some constant C. We'll use this again.

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on l is

$$
F(x)+C \quad \text { where } C \text { is an arbitrary constant. }
$$

For example, the most gerund antideinative of

$$
\begin{array}{r}
f(x)=2 x \text { is } x^{2}+C \text {, well writ this } \\
\text { as } F(x)=x^{2}+C
\end{array}
$$

Find the most general antiderivative of f.
(i) $f(x)=2 e^{2 x}, \quad I=(-\infty, \infty) \quad e^{2 x}$ is on outider.

The most genend is

$$
F(x)=e^{2 x}+C \text { for constant } C
$$

(ii) $\quad f(x)=\frac{1}{x}, \quad I=(0, \infty)$

$$
F(x)=\ln x+C
$$

Question: Find the most general antiderivative of f.

(iii) $f(x)=\sin x, \quad I=(-\infty, \infty)$
(a) $\quad F(x)=\cos x$
(b) $\quad F(x)=\cos x+C$
(c) $F(x)=-\cos x+C$

Question: Find the most general antiderivative of f.

(iv) $f(x)=\sec x \tan x, \quad I=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $\quad F(x)=\sec x$
(b) $F(x)=\sec x+C$
(c) $F(x)=\tan x+C$

