Mar. 23 Math 2254H sec 015H Spring 2015

Section 11.4: Comparison Tests

Note: In this section, we restrict our attention to series of nonnegative terms.

Motivating Example: Consider the two similar—yet different—series:
(i) $\sum_{n=0}^{\infty} \frac{1}{3^{n}}$
and
(ii) $\sum_{n=0}^{\infty} \frac{1}{3^{n}+7}$

Question: Does the series on the right, (ii), converge or diverge?

Comparing Series

(i) $\sum_{n=0}^{\infty} \frac{1}{3^{n}} \quad$ and
(ii) $\sum_{n=0}^{\infty} \frac{1}{3^{n}+7}$

- The one on the left, (i), is geometric $|r|=|1 / 3|<1$-obviously convergent.
- The one on the right, (ii), is not geometric. And $f(x)=\frac{1}{3^{x}+7}$ isn't readily integrated!
- Does it help to notice that

$$
\frac{1}{3^{n}+7}<\frac{1}{3^{n}}
$$

for every value of n ?

Let $\left\{S_{n}\right\}$ be the sequence of partied sums for $\sum_{n=0}^{\infty} \frac{1}{3^{n}}$, and let $\left\{t_{n}\right\}$ be the sequence of partial surv for $\sum_{n=0}^{\infty} \frac{1}{3^{n}+7}$.

$$
s_{n+1}=s_{n}+\frac{1}{3^{n+1}}>s_{n}
$$

$$
\begin{aligned}
& S_{0}=\frac{1}{3^{0}} \\
& S_{1}=\frac{1}{3^{0}}+\frac{1}{3} \\
& s_{2}=\frac{1}{3^{0}}+\frac{1}{3}+\frac{1}{3^{2}}
\end{aligned}
$$

$\left\{S_{n}\right\}$ is incuasing.
Also, $S_{n} \rightarrow \frac{1}{1-\frac{1}{3}}=\frac{3}{2}$
Note $\left\{S_{n}\right\}$ is bounded $0 \leq S_{n} \leq \frac{3}{2}$ for all n

$$
\begin{aligned}
& t_{0}=\frac{1}{3^{0}+7}<s_{0} \\
& t_{1}=\frac{1}{3^{0}+7}+\frac{1}{3^{1}+7}<s_{1} \\
& t_{2}=\frac{1}{3^{0}+7}+\frac{1}{3^{1}+7}+\frac{1}{3^{2}+7}<s_{2}
\end{aligned}
$$

In fact $t_{n} \leq s_{n}$ for all $n \geq 0$.
$t_{n+1} \geqslant t_{n}$ for all n.
$\left\{t_{n}\right\}$ is bounded and monotonic.
Hence t_{n} converges.
The sees is convergent.

Comparing Series

What if we consider the two series
(i) $\sum_{n=1}^{\infty}\left(\frac{5}{2}\right)^{n} \quad$ and
(ii) $\quad \sum_{n=1}^{\infty}\left[\ln (n)\left(\frac{5}{2}\right)^{n}\right]$

- The one on the left, (i), is geometric $|r|=|5 / 2|>1$-obviously divergent.
- The one on the right, (ii), is not geometric. And $f(x)=\ln (x)(5 / 2)^{x}$ isn't readily integrated!
- And for every $n \geq 3$,

$$
\ln (n)\left(\frac{5}{2}\right)^{n}>\left(\frac{5}{2}\right)^{n}
$$

If $\left\{S_{n}\right\}$ is the sequence of partial sums for $\sum_{n=1}^{\infty}\left(\frac{s}{2}\right)^{n}$. $\lim _{n \rightarrow \infty} s_{n}=\infty$

If $\left\{t_{n}\right\}$ is the sequence of partied suns for $\sum_{n=1}^{\infty}\left(\ln (n)\left(\frac{5}{2}\right)^{n}\right)$

$$
\begin{aligned}
& t_{n+2} \geqslant s_{n+2} \\
& \lim _{n \rightarrow \infty} t_{n}=\infty
\end{aligned}
$$

Hence the series is diver gent.

Theorem: The Direct Comparison Test

Theorem: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms, such that ${ }^{1}$
$a_{n} \leq b_{n}$ for each n.
(i) If $\sum b_{n}$ is convergent, then $\sum a_{n}$ is convergent.
(ii) If $\sum a_{n}$ is divergent, then $\sum b_{n}$ is dinvergent.
${ }^{1}$ If the condition $a_{n} \leq b_{n}$ doesn't hold for some first finite number of terms, the result is unchanged. We could say $a_{n} \leq b_{n}$ for all $n \geq n_{0}$ for some number n_{0}.

Example

Determine the convergence or divergence of the series.
(a) $\quad \sum_{n=0}^{\infty} \frac{1}{3^{n}+7}$

Conveguat
(b) $\sum_{n=1}^{\infty}\left[\ln (n)\left(\frac{5}{2}\right)^{n}\right] \quad$ Divergent.

Example
Determine the convergence or divergence of the series.
(c) $\sum_{n=1}^{\infty} \frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}}$

Note

$$
\begin{gathered}
n^{7}+4 n^{2}+3 \geqslant n^{7} \Rightarrow \\
\frac{1}{n^{7}} \geqslant \frac{1}{n^{7}+4 n^{2}+3} \Rightarrow \\
\frac{1}{\sqrt[3]{n^{7}}} \geqslant \frac{1}{\sqrt[3]{n^{7}+4 n^{2}+3}} \Rightarrow \\
\frac{n}{n^{7 / 3}} \geqslant \frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}}
\end{gathered}
$$

March 20, 2015

$$
\Rightarrow \frac{1}{n^{4 / 3}} \geqslant \frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}}$ is a p-series awl $p=\frac{4}{3}>1$ which is convergent.

Hence $\sum_{n=1}^{\infty} \frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}}$ is
convergent by direct comparison.

Example
Determine the convergence or divergence of the series.
(d) $\sum_{n=2}^{\infty} \frac{n^{3}}{n^{4}-2}$

Note $n^{4}-2 \leq n^{4}$

$$
\begin{aligned}
& \frac{1}{n^{4}} \leq \frac{1}{n^{4}-2} \text { for } n \geq 2 \\
& \frac{n^{3}}{n^{4}} \leq \frac{n^{3}}{n^{4}-2} \\
& \Rightarrow \quad \frac{1}{n} \leqslant \frac{n^{3}}{n^{4}-2}
\end{aligned}
$$

Since $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=2}^{\infty} \frac{n^{3}}{n^{4}-2}$ divergso by direet compaison.

A Potential Fly in the Ointment

Consider the two series
(i) $\sum_{n=2}^{\infty} \frac{1}{3^{n}}$
and
(ii) $\sum_{n=2}^{\infty} \frac{1}{3^{n}-7}$

Unfortunately $\frac{1}{3^{n}-7} \leq \frac{1}{3^{n}}$. in fact $\frac{1}{3^{n}} \leq \frac{1}{3^{n}-7}$.

Don't we strongly suspect that $\sum \frac{1}{3^{n}-7}$ ought to be convergent? It is SO similar to $\sum \frac{1}{3^{n}}$.

We need a way to compare similar series that doesn't require such a specific inequality!

Theorem: The Limit Comparison Test

Theorem: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c, \quad \text { and } \quad 0<c<\infty
$$

Then either both series converge, or both series diverge.

Example
Determine the convergence or divergence of the series.
(a) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$

For $\quad n \rightarrow \infty$
$n \sqrt{n^{2}-1}$ behaves like

$$
n^{2}
$$

Use limit comparison test w 1 the convergent p-series $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$.

Let $a_{n}=\frac{1}{n \sqrt{n^{2}-1}}$ and $b_{n}=\frac{1}{n^{2}}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \sqrt{n^{2}-1}}}{\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n \sqrt{n^{2}-1}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2} \sqrt{1-\frac{1}{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{n^{2}}}} \\
& =1 \quad, \quad 0<1<\infty
\end{aligned}
$$

Hence $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ converges.

Example
Determine the convergence or divergence of the series.
(b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{5 n^{3}-2 n+1}}$

For $\quad n \rightarrow \infty$
$\sqrt[4]{5 n^{3}-2 n+1}$
behaves like

$$
\sqrt[4]{5 n^{3}}
$$

Limit comp arson w the known divergent series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 4}}$.

Let $a_{n}=\frac{1}{n^{3 / 4}}$ and $b_{n}=\frac{1}{\sqrt[4]{5 n^{3}-2 n+1}}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{a_{n}}{b_{n}}
\end{aligned}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3 / 4}}}{\frac{1}{\sqrt[4]{5 n^{3}-2 n+1}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[4]{5 n^{3}-2 n+1}}{n^{3 / 4}}=\lim _{n \rightarrow \infty}^{\sqrt[4]{5-\frac{2}{n^{2}}+\frac{1}{n^{3}}}} \begin{aligned}
& =\lim _{n \rightarrow \infty} \sqrt[4]{\frac{5 n^{3}-2 n+1}{n^{3}}} \\
& \\
& =\sqrt[4]{5}, 0<\sqrt[4]{5}<\infty .
\end{aligned}
$$

So $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{S_{n}^{3}-2 n+1}}$ divenges.

Analyzing Expressions with Powers and Roots Identify the leading term in the numerator and in the denominator. Then take the ratio. For example:

$$
\begin{aligned}
& \frac{\sqrt{3 n^{3}+4 n-6}}{\sqrt[5]{8 n^{12}+32 n^{7}-6 n^{4}+12}} \sim \frac{\sqrt{3 n^{3}}}{\sqrt[5]{8 n^{12}}} \\
& \frac{n^{3 / 2}}{n^{2 / 3}}=\frac{1}{n^{\frac{12}{5}-\frac{3}{2}}}=\frac{1}{n^{9 / 10}}
\end{aligned}
$$

Using a Comparison Test

- First try to determine if you think a series converges or diverges.
- Next, pick a series to compare it to such that (1) this series has the same convergence/divergence behavior, and (2) you can prove it! (usually use a p-series).
- Take the limit if using limit comparison-it doesn't matter who you call a_{n} and who you call b_{n}.
- Set up the inequality $\left(a_{n} \leq b_{n}\right)$ if using direct comparison. If your series converges, it should be a_{n}. If your series diverges, you want it to be b_{n}.
- Clearly state your final conclusion for all the world to see!

