March 27 Math 2306 sec. 57 Spring 2018

Section 15: Shift Theorems

Theorem (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \\
\left.\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

Example
(a)

$$
=\frac{5!}{(s+3)^{6}}
$$

$$
\begin{aligned}
& \mathcal{L}\left\{t^{5}\right\}=\frac{5!}{S^{6}} \\
& \text { Were } a=-3 \\
& \text { so } s-a=s+3
\end{aligned}
$$

Example
(b) $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}-4 s+8}\right\} \quad s^{2}-4 s+8 \quad$ is irreducible
we con complete the square

$$
\begin{aligned}
s^{2}-4 s+8 & =s^{2}-4 s+4+4 \\
& =(s-2)^{2}+2^{2} \\
\frac{1}{s^{2}-4 s+8} & =\frac{1}{(s-2)^{2}+2^{2}} \quad \text { Looks most like } \\
& =\frac{1}{2} \frac{2}{(s-2)^{2}+2^{2}} \quad
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}-4 s+8}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{2} \frac{2}{(s-2)^{2}+2^{2}}\right\} \\
& =\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{(s-2)^{2}+2^{2}}\right\} \\
& =\frac{1}{2} e^{2+} \sin (2 t)
\end{aligned}
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions

Verify that

$$
f(t)=\left\{\begin{array}{ll}
g(t), & 0 \leq t<a \\
h(t), & t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

We verified this last time by showing that the expression on the far right is equal to f on the two intervals $0 \leq t<a$ and $t \geq a$.

Piecewise Defined Functions in Terms of \mathscr{U}
Write f on one line in terms of \mathscr{U} as needed

$$
\begin{gathered}
f(t)=\left\{\begin{array}{cc}
e^{t}, & 0 \leq t<2 \\
t^{2}, & 2 \leq t<5 \\
2 t & t \geq 5
\end{array}\right. \\
f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5) \\
\uparrow_{\text {on off }} \quad \prod_{\text {on }} \quad \text { on } \quad \uparrow_{\text {off }}
\end{gathered}
$$

we con verity:

$$
\text { For } 0 \leq t<2, \quad u(t-2)=0 \quad u(t-5)=0
$$

Then

$$
f(t)=e^{t}-e^{t} \cdot 0+t^{2} \cdot 0-t^{2} \cdot 0+2 t \cdot 0=e^{t}
$$

For $2 \leq t<5, \quad u(t-2)=1 \quad u(t-5)=0$

Then

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 0+2 t \cdot 0=t^{2}
$$

For $t \geqslant 5, \quad u(t-2)=1 \quad u(t-5)=1$
Then

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 1+2 t \cdot 1=2 t
$$

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

Find $\mathscr{L}\{\mathscr{U}(t-a)\}$

$$
\begin{aligned}
\mathscr{L}\{u(t-a)\} & =\int_{0}^{\infty} e^{-s t} u(t-a) d t \quad u(t-a)=(1, t \geqslant a \\
& =\int_{0}^{a} e^{-s t} u(t-a) d t+\int_{a}^{\infty} e^{-s t} u(t-a) d t \\
& =\int_{0}^{a} e^{-s t} \cdot 0 d t+\int_{a}^{\infty} e^{-s t} \cdot 1 d t \\
& \left.=\int_{a}^{\infty} e^{-s t} d t \quad \quad \quad \text { diverges if } s=0\right) \\
& =\left.\frac{-1}{s} e^{-s t}\right|_{a} ^{\infty} \quad \text { requires } \quad s>0
\end{aligned}
$$

$$
=\frac{-1}{s}\left(0-e^{-a s}\right)=\frac{e^{-a s}}{s}
$$

Example
Find the Laplace transform $\mathscr{L}\{f(t)\}$ where

$$
f(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write f in terms of unit step functions.

$$
\begin{aligned}
f(t) & =1-1 u(t-1)+t u(t-1) \quad \text { Let's simplify } \\
& =1-u(t-1)(1-t) \\
& =1+(t-1) u(t-1)
\end{aligned}
$$

Example Continued...
(b) Now use the fact that $f(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{f\}$.

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\mathcal{L}\{1+(t-1) u(t-1)\} \\
& =\mathcal{L}\{1\}+\mathcal{L}\{(t-1) u(t-1)\} \\
& =\frac{1}{s}+\frac{1}{s^{2}} e^{-s}
\end{aligned}
$$

* If $g(t)=t$ then $g(t-1)=t-1$ and $\mathcal{L}\{g(t)\}=\frac{1}{s^{2}}$

A Couple of Useful Results
Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

Because $g(t)=g((t+a)-a)$
Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathscr{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

* $\cos \left(t+\frac{\pi}{2}\right)=\cos t \cos \frac{\pi}{2}-\sin t \sin \frac{\pi}{2}$

$$
=\cos t \cdot 0-\sin t \cdot 1=-\sin t
$$

$$
\begin{aligned}
\mathcal{L}\{\cos t \mathcal{U}(t-\pi / 2)\} & =e^{-\frac{\pi}{2} s} \mathcal{L}\left\{\operatorname{col}\left(t+\frac{\pi}{2}\right)\right\} \\
& =e^{-\frac{\pi}{2} s} \mathcal{L}\{-\sin t\} \\
& =e^{-\frac{\pi}{2} s}\left(\frac{-1}{s^{2}+1^{2}}\right) \\
& =\frac{-e^{-\frac{\pi}{2} s}}{s^{2}+1}
\end{aligned}
$$

A Couple of Useful Results
The inverse form of this translation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$.

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$ Here $F(s)=\frac{1}{s(s+1)}$
Do decomp on $F(s)$

$$
\begin{aligned}
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1} \Rightarrow \quad 1 & =A(s+1)+B s \\
s & =0 \quad 1=A \\
s & =-1 \quad 1=-B \Rightarrow B=-1
\end{aligned}
$$

$$
\begin{aligned}
& F(s)=\frac{1}{s}-\frac{1}{s+1} \text { and } \\
& \begin{aligned}
\mathcal{L}^{-1}\{F(s)\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
& =1-e^{-t}
\end{aligned}
\end{aligned}
$$

this is ow $f(t)$
for $f(t-a) u(t-a)$

$$
\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=\left(1-e^{-(t-2)}\right) u(t-2)
$$

