March 27 Math 3260 sec. 56 Spring 2018

Section 4.6: Rank

Definition: The **row space**, denoted Row *A*, of an $m \times n$ matrix *A* is the subspace of \mathbb{R}^n spanned by the rows of *A*.

We now have three vector spaces associated with an $m \times n$ matrix A, its column space, null space, and row space.

イロト イポト イラト イラト

March 26, 2018

1/52

If two matrices *A* and *B* are row equivalent, then their row spaces are the same.

In particular, if B is an echelon form of the matrix A, then the nonzero rows of B form a basis for Row B—and also for Row A since these are the same space.

A D N A B N A B N A B N

Example

A matrix A along with its rref is shown.

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find a basis for Row A and state the dimension dim Row A. We can use the non-zero rows of the cref. A basis is $\begin{cases} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{cases}, \begin{bmatrix} 0 \\ 1 \\ -2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -5 \end{bmatrix} \end{cases}$ dim (Row A) = 3

Example continued ...

(b) Find a basis for Col A and state its dimension.

We can take the pivot columns. From the rret we see these are columns 1, 2, and 4. A basis for ColA is $\left\{ \begin{bmatrix} -2\\ 1\\ 3\\ 1 \end{bmatrix}, \begin{bmatrix} -5\\ 3\\ 1\\ 7\\ 5 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 7\\ 5 \end{bmatrix} \right\}$

din (ColA) = 3

< ロ > < 同 > < 回 > < 回 >

Example continued ...

(c) Find a basis for Nul A and state its dimension.

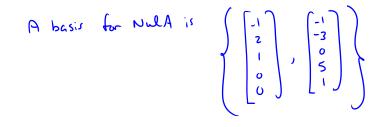
We use the rref to characterize solutions to AX=0.

$$X_1 = -X_3 - X_5$$

 $X_2 = 2X_3 - 3X_5$
 $X_4 = 5X_5$
 $X_3, X_5 - free$

$$f_{r} = \overline{X} \text{ in } N \cdot I A$$

$$= \begin{bmatrix} -X_{3} - X_{5} \\ 2X_{3} - 3X_{5} \\ X_{3} \\ SX_{5} \\ X_{5} \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix}$$



dim (NulA) = 2

Remarks

- We can naturally associate three vector spaces with an *m* × *n* matrix *A*. Row *A* and Nul *A* are subspaces of ℝⁿ and Col *A* is a subspace of ℝ^m.
- Careful! The rows of the rref do span Row A. But we go back to the columns in the original matrix to get vectors that span Col A. (Get a basis for Col A from A itself!)
- Careful Again! Just because the first three rows of the rref span Row A does not mean the first three rows of A span Row A. (Get a basis for Row A from the rref!)

Remarks

- Row operations preserve row space, but change linear dependence relations of rows. Row operations change column space, but preserve linear dependence relations of columns.
- Another way to obtain a basis for Row A is to take the transpose A^T and do row operations. We have the following relationships:

$$\operatorname{Col} A = \operatorname{Row} A^T$$
 and $\operatorname{Row} A = \operatorname{Col} A^T$.

• The dimension of the null space is called the **nullity**.

Rank

Definition: The **rank** of a matrix *A* (denoted rank *A*) is the dimension of the column space of *A*.

Theorem: For $m \times n$ matrix A, dim Col A = dim Row A = rank A. Moreover

rank A + dim Nul A = n.

Note: This theorem states the rather obvious fact that

 $\left\{\begin{array}{c} \mathsf{number of} \\ \mathsf{pivot columns} \end{array}\right\} \ + \ \left\{\begin{array}{c} \mathsf{number of} \\ \mathsf{non-pivot columns} \end{array}\right\} \ = \ \left\{\begin{array}{c} \mathsf{total number} \\ \mathsf{of columns} \end{array}\right\}.$

March 26, 2018

9/52

Examples (1) A is a 5 × 4 matrix with rank A = 4. What is dim Nul A? rank A + dim Nue A = n = 4 4 + dim Nue A = 4 = 3 dim Nue A = 0 Ax=0 has only the trivial solu.

(2) If A is 7×5 and dim Col A = 2. Determine the nullity¹ of A and rank A^{T} . Tank A + multiply = n = 52 + multiply = $5 \implies$ multiply = 3

Addendum to Invertible Matrix Theorem

Let *A* be an $n \times n$ matrix. The following are equivalent to the statement that *A* is invertible.

イロト イポト イラト イラト

March 26, 2018

11/52

(m) The columns of A form a basis for \mathbb{R}^n

- (n) Col $A = \mathbb{R}^n$
- (o) dim Col A = n
- (p) rank A = n
- (q) Nul *A* = {**0**}
- (r) dim Nul A = 0

Section 6.1: Inner Product, Length, and Orthogonality **Recall:** A vector **u** in \mathbb{R}^n can be considered an $n \times 1$ matrix. It follows that \mathbf{u}^T is a $1 \times n$ matrix

$$\mathbf{u}^T = [u_1 \ u_2 \ \cdots \ u_n].$$

Definition: For vectors **u** and **v** in \mathbb{R}^n we define the **inner product** of **u** and **v** (also called the **dot product**) by the **matrix product**

$$\mathbf{u}^{T}\mathbf{v} = \begin{bmatrix} u_{1} \ u_{2} \ \cdots \ u_{n} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix} = u_{1}v_{1} + u_{2}v_{2} + \cdots + u_{n}v_{n}.$$

March 26, 2018

12/52

Note that this product produces a scalar. It is sometimes called a *scalar product*.

Theorem (Properties of the Inner Product)

We'll use the notation $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$.

March 26, 2018

13/52

Theorem: For **u**, **v** and **w** in \mathbb{R}^n and real scalar c (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

(b)
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

(c)
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

(d) $\mathbf{u} \cdot \mathbf{u} \ge 0$, with $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

The Norm

The property $\mathbf{u} \cdot \mathbf{u} \ge 0$ means that $\sqrt{\mathbf{u} \cdot \mathbf{u}}$ always exists as a real number.

Definition: The **norm** of the vector **v** in \mathbb{R}^n is the nonnegative number denoted and defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

where v_1, v_2, \ldots, v_n are the components of **v**.

As a directed line segment, the norm is the same as the length.

A D > A D > A D > A D > D < D</p>

Norm and Length

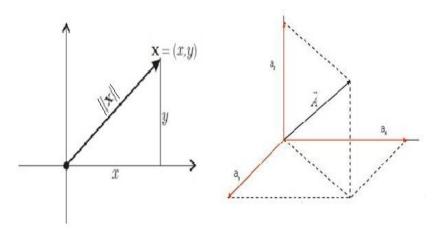


Figure: In \mathbb{R}^2 or $\mathbb{R}^3,$ the norm corresponds to the classic geometric property of length.

Unit Vectors and Normalizing

Theorem: For vector **v** in \mathbb{R}^n and scalar c

 $\|\mathbf{C}\mathbf{V}\| = |\mathbf{C}|\|\mathbf{V}\|.$

Definition: A vector **u** in \mathbb{R}^n for which $||\mathbf{u}|| = 1$ is called a **unit vector**.

Remark: Given any nonzero vector **v** in \mathbb{R}^n , we can obtain a unit vector **u** in the same direction as **v**

$$\mathbf{u} = rac{\mathbf{v}}{\|\mathbf{v}\|}.$$

This process, of dividing out the norm, is called **normalizing** the vector V.

> March 26, 2018

16/52

Example

Show that $\mathbf{v}/\|\mathbf{v}\|$ is a unit vector.

We have to show that its norm is 1. $\left\|\frac{\nabla}{\|\nabla\|}\right\| = \left\|\frac{1}{\|\nabla\|} \nabla\right\| = \left|\frac{1}{\|\nabla\|}\right| \|\nabla\| = \frac{1}{\|\nabla\|} \|\nabla\| = \frac{1}{\|\nabla\|} \|\nabla\|$ $\int_{1}^{100ks} P^{x_i, kive^{-2}} = \frac{\|\nabla\|}{\|\nabla\|} = 1$

3

イロト イポト イヨト イヨト

Example

1

Find a unit vector in the direction of $\mathbf{v} = (1, 3, 2)$.

<ロト <回 > < 回 > < 回 > < 回 > … 回

Distance in \mathbb{R}^n

Definition: For vectors **u** and **v** in \mathbb{R}^n , the **distance between u and v** is denoted and defined by

 $dist(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\|.$

Example: Find the distance between $\mathbf{u} = (4, 0, -1, 1)$ and $\mathbf{v} = (0, 0, 2, 7)$. $\vec{u} = \vec{v} = (4, 0, -3, -6)$

 $d_{15+}(\vec{u},\vec{v}) = ||\vec{u}-\vec{v}|| = \sqrt{4^2 + 0^2 + (-3)^2 + (-6)^2} = \sqrt{6}$

March 26, 2018 19 / 52

イロト 不得 トイヨト イヨト 二日

Orthogonality Definition: Two vectors are **u** and **v** orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

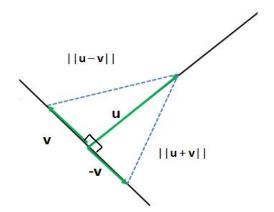


Figure: Note that two vectors are perpendicular if $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} + \mathbf{v}\|$