March 28 Math 1190 sec. 63 Spring 2017

Section 4.8: Antiderivatives; Differential Equations

Definition: A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \text { for all } x \text { in } I
$$

As a consequence of the Mean Value Theorem, we have ...

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on $/$ is
$F(x)+C$ where C is an arbitrary constant.

Find the most general antiderivative of f.

$$
f(x)=\frac{4 x^{4}+1}{x}, \quad I=(0, \infty)
$$

we want to recognize f as the derivative of something.
well use degebra to make f recognizable.

$$
\begin{gathered}
f(x)=\frac{4 x^{4}+1}{x}=\frac{4 x^{4}}{x}+\frac{1}{x}=4 x^{3}+\frac{1}{x} \\
F(x)=x^{4}+\ln x+C
\end{gathered}
$$

Check

$$
F^{\prime}(x)=4 x^{3}+\frac{1}{x}+0=4 x^{3}+\frac{1}{x}
$$

Question: Find the most general antiderivative of f.

$$
f(x)=\frac{3 x-1}{x}, \quad I=(0, \infty)
$$

(b) $F(x)=\frac{1}{x^{2}}+C$
(c) $F(x)=3 x-\ln x+C$

Find the most general antiderivative of

$$
f(x)=x^{n}, \quad \text { where } n=1,2,3, \ldots
$$

Weill make a guess as to the form of a_{n} outiderivatine. $F(x)=A x^{k}$ where A and k are constants.
we need $F^{\prime}(x)=f(x) \Rightarrow A k x^{k-1}=x^{n}$
This gives $k-1=n \quad$ (anctich powers)
and $\quad A k=1$ (match coefficients)

So $k=n+1$ and $A(n+1)=1 \Rightarrow A=\frac{1}{n+1}$

This mons that $F(x)=\frac{1}{n+1} x^{n+1}$

The most genera ontiderivative of x^{n} is

$$
\frac{x^{n+1}}{n+1}+C
$$

The power rule for ont: derivatives.
This actually holds for all $n \neq-1$.

Some general results ${ }^{1}$:

(See the table on page 330 in Sullivan \& Miranda for a more comprehensive list.)

Function	Particular Antiderivative	Function	Particular Antiderivative
$c f(x)$	$c F(x)$	$\cos x$	$\sin x$
$f(x)+g(x)$	$F(x)+G(x)$	$\sin x$	$-\cos x$
$x^{n}, n \neq-1$	$\frac{x^{n+1}}{n+1}$	$\sec ^{2} x$	$\tan x$
$\frac{1}{x}$	$\ln \|x\|$	$\csc x \cot x$	$-\csc x$
$\frac{1}{x^{2}+1}$	$\tan ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x$

${ }^{1}$ We'll use the term particular antiderivative to refer to any antiderivative that has no arbitrary constant in it.

Example
Find the most general antiderivative of $h(x)=x \sqrt{x}$ on $(0, \infty)$.

$$
h(x)=x \sqrt{x}=x \cdot x^{1 / 2}=x^{3 / 2}
$$

power rube wi $n=\frac{3}{2}, \frac{3}{2}+1=\frac{5}{2}$

$$
\frac{x^{n+1}}{n+1}
$$

$$
H(x)=\frac{\frac{1}{5 / 2} x^{s / 2}+C}{H(x)=\frac{2}{5} x^{s / 2}+C}
$$

Example
Determine the function $H(x)$ that satisfies the following conditions

$$
H^{\prime}(x)=x \sqrt{x}, \quad \text { for all } x>0 \text {, and } H(1)=0 .
$$

From the las example，H must ham
we impose $H=0$ when $x=1$

$$
0=\frac{2}{5}(1)^{5 / 2}+C \Rightarrow 0=\frac{2}{5}+C \Rightarrow c=\frac{-2}{5}
$$

s．our $H(x)=\frac{2}{5} x^{5 / 2}-\frac{2}{5}$ ．

Example

A differential equation is an equation that involves the derivative(s) of an unknown function. Solving such an equation would mean finding such an unknown function.

For example, we just solved the differential equation

$$
\frac{d H}{d x}=x \sqrt{x}
$$

subject to the additional condition that $H=0$ when $x=1$.
The condition $H(1)=0$ is usually called an initial condition if x represents time. It may be called a boundary condition if x represents space.

Question

The most general solution to the differential equation

$$
\frac{d y}{d x}=2 x+1 \quad \text { is }
$$

(a) $y=2 x+1+C$
(b) $y=x^{2}+1+C$
(c) $y=x^{2}+x$
(d) $y=x^{2}+x+C$

Question

The solution to the differential equation subject to the boundary condition

$$
\frac{d y}{d x}=2 x+1 \quad y(1)=-2 \quad \text { when } \begin{aligned}
& x=1 \\
& y=2
\end{aligned}
$$

(a) $y=x^{2}+x-2$

$$
\begin{aligned}
& y=x^{2}+x+c \\
& -2=1^{2}+1+c \\
& -2=2+c \Rightarrow c=-4
\end{aligned}
$$

(c) $y=x^{2}+x$
(d) $y=x^{2}+x+C-2$

Example

A particle moves along the x-axis so that its acceleration at time t is given by

$$
a(t)=12 t-2 \quad \mathrm{~m} / \mathrm{sec}^{2}
$$

At time $t=0$, the velocity v and position s of the particle are known to be

$$
v(0)=3 \mathrm{~m} / \mathrm{sec}, \text { and } \quad s(0)=4 \mathrm{~m} .
$$

Find the position $s(t)$ of the particle for all $t>0$.

$$
\begin{aligned}
& \text { we know that } a(t)=\frac{d v}{d t} \\
& \frac{d v}{d t}=12 t-2 \text { with } v(0)=3 \\
& v=12 \frac{t^{2}}{2}-2 t+C=6 t^{2}-2 t+C
\end{aligned}
$$

Impose $V(0)=3 \quad 3=6 \cdot 0^{2}-2 \cdot 0+C \Rightarrow C=3$

So the velocity $V(t)=6 t^{2}-2 t+3$ m/sec
Since $\quad V(t)=\frac{d s}{d t}$, we have to solve

$$
\begin{aligned}
& \frac{d s}{d t}=6 t^{2}-2 t+3 \quad \text { wish } \quad s(0)=4 \\
& s=6 \frac{t^{3}}{3}-2 \cdot \frac{t^{2}}{2}+3 t+C \\
& s=2 t^{3}-t^{2}+3 t+C
\end{aligned}
$$

Impose $s(0)=4$

$$
4=2 \cdot 0^{3}-0^{2}+3 \cdot 0+c \quad \Rightarrow \quad c=4
$$

So the partide's position

$$
s(t)=2 t^{3}-t^{2}+3 t+4
$$

Section 5.1: Area (under the graph of a nonnegative function)

We will investigate the area enclosed by the graph of a function f. We'll make the following assumptions (for now):

- f is continuous on the interval $[a, b]$, and
- f is nonnegative, i.e $f(x) \geq 0$, on $[a, b]$.

Our Goal: Find the area of such a region.

Figure: Region under a positive curve $y=f(x)$ on an interval $[a, b]$.
we could approximate with rectangles determined by

Figure: We could approximate the area by filling the space with rectangles.
we could use right and points instead.

Figure: We could approximate the area by filling the space with rectangles.

Figure: Some choices as to how to define the heights.

Approximating Area Using Rectangles

We can experiment with

- Which points to use for the heights (left, right, middle, other....)
- How many rectangles we use
to try to get a good approximation.

Definition: We will define the true area to be value we obtain taking the limit as the number of rectangles goes to $+\infty$.

Some terminology

- A Partition P of an interval $[a, b]$ is a collection of points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b .
$$

- A Subinterval is one of the intervals $x_{i-1} \leq x \leq x_{i}$ determined by a partition.
- The width of a subinterval is denoted $\Delta x_{i}=x_{i}-x_{i-1}$. If they are all the same size (equal spacing), then
$\Delta x=\frac{b-a}{n}, \quad$ and this is called the norm of the partition.
- A set of sample points is a set $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ such that $x_{i-1} \leq c_{i} \leq x_{i}$.
Taking the number of rectangles to ∞ is the same as taking the width $\Delta x \rightarrow 0$.

Example:
Write an equally spaced partition of the interval [0,2] with the specified number of subintervals, and determine the norm Δx.
(a) For $n=4$

$$
\begin{aligned}
& \Delta x=\frac{b-a}{n}=\frac{2-0}{4}=\frac{1}{2} \\
& x_{0}=0 \\
& x_{1}=\frac{1}{2} \\
& x_{2}=1 \\
& x_{3}=\frac{3}{2} \\
& x_{4}=2
\end{aligned}
$$

Note

$$
\begin{array}{ll}
x_{0}=a & \text { In general } \\
x_{1}=a+1 \cdot \Delta x & x_{i}=a+i \Delta x \\
x_{2}=a+2 \Delta x & i=0,1,2, \ldots, n \\
x_{3}=a+3 \Delta x &
\end{array}
$$

Example:
Write an equally spaced partition of the interval $[0,2]$ with the specified number of subintervals, and determine the norm Δx.
(b) For $n=8$

$$
\begin{array}{lll}
\Delta x=\frac{b-a}{n}=\frac{2-0}{8}=\frac{1}{4} & x_{7}=1 / 4 & \text { Note } \\
x_{0}=0 & x_{i}=0+i\left(\frac{1}{4}\right) \\
x_{1}=\frac{1}{4} & x_{5}=\frac{5}{4} & x_{8}=2 \\
x_{2}=\frac{1}{2} & x_{6}=\frac{3}{2} & \uparrow \quad \uparrow \\
x_{3}=\frac{3}{4} & & a \quad d x
\end{array}
$$

Question

Write an equally spaced partition of the interval $[0,2]$ with 6 subintervals, and determine the norm Δx.
(a) $\left\{0, \frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}, 2\right\} \quad \Delta x=\frac{1}{3}$

$$
\Delta x=\frac{2-0}{6}=\frac{1}{3}
$$

(b) $\left\{0, \frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}, 2\right\} \quad \Delta x=\frac{1}{6}$
(c) $\left\{0, \frac{1}{6}, \frac{1}{3}, 1, \frac{5}{6}, \frac{7}{6}, 2\right\} \quad \Delta x=\frac{1}{3}$
(c) Find an equally spaced partition of $[0,2]$ having N subintervals. What is the norm Δx ?

$$
\Delta x=\frac{b-a}{n}=\frac{2-0}{N}=\frac{2}{N}
$$

$x_{0}=0$
$x_{1}=\frac{2}{N}=0+1 \cdot \Delta x$
$x_{2}=2 \cdot \frac{2}{N}=0+2 \Delta x$
$x_{3}=3 \cdot \frac{2}{N}=0+3 \Delta x$

$$
x_{i}=i \cdot \frac{2}{N}=\frac{2 i}{N}
$$

for $i=0,1,2, \ldots, N$

Note $X_{N}=N \cdot \frac{2}{N}=2$ as required.

Approximating area with a Partition and sample points

Figure: Area $=f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+f\left(c_{3}\right) \Delta x+f\left(c_{4}\right) \Delta x$. This can be written as

$$
\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x . \leftarrow \text { called a Riemann Sum }
$$

Sum Notation

\sum is the capital letter sigma, basically a capital Greek " S ".
If $a_{1}, a_{2}, \ldots, a_{n}$ are a collection of real numbers, then

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n} .
$$

This is read as
the sum from i equals 1 to n of a_{i} (a sub i).
For example

$$
\begin{aligned}
& \sum_{i=1}^{4} i=1+2+3+4=10 \\
& \sum_{i=1}^{3} 2 i^{2}=2 \cdot 1^{2}+2 \cdot 2^{2}+2 \cdot 3^{2}=28
\end{aligned}
$$

In general, an equally spaced partition of $[a, b]$ with n subintervals means

- $\Delta x=\frac{b-a}{n}$
- $x_{0}=a, x_{1}=a+\Delta x, x_{2}=a+2 \Delta x$, i.e. $x_{i}=a+i \Delta x$
- Taking heights to be
left ends $\quad c_{i}=x_{i-1} \quad$ area $\approx \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$
right ends $\quad c_{i}=x_{i} \quad$ area $\approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$
- The true area exists (for f continuous) and is given by

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Lower and Upper Sums

The standard way to set up these sums is to take c_{i} such that
$f\left(c_{i}\right)$ is the abs. minimum value of f on $\left[x_{i-1}, x_{i}\right]$

Then set A_{L}

$$
A_{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

This is called a Lower Riemann sum.

Lower and Upper Sums

Then, we take C_{i} such that
$f\left(C_{i}\right)$ is the abs. maximum value of f on $\left[x_{i-1}, x_{i}\right]$

Then set A_{U}

$$
A_{U}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(C_{i}\right) \Delta x
$$

This is called a Upper Riemann sum.

Lower and Upper Sums

If f is continuous on $[a, b]$, then it will necessarily be that

$$
A_{L}=A_{U} .
$$

This value is the true area.

In practice, these are tough to compute unless f is only increasing or only decreasing. So instead, we tend to use left and right sums.

Example: Find the area under the curve $f(x)=1-x^{2}$, $0 \leq x \leq 1$.
Use right end points $c_{i}=x_{i}$ and assume the following identity

$$
\sum_{i=1}^{n} i^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}
$$

(sum of first n squares)

Form a partition wi n subintands

$$
\begin{gathered}
\Delta x=\frac{b-a}{n}=\frac{1-0}{n}=\frac{1}{n} \\
x_{0}=0, x_{1}=\frac{1}{n}, x_{2}=2 \cdot \frac{1}{n}, \ldots \\
x_{i}=a+i \Delta x=0+i \frac{1}{n} \\
x_{i}=\frac{i}{n}
\end{gathered}
$$

for one rectangle, the height is $f\left(x_{i}\right)$

$$
f\left(x_{i}\right)=1-\left(x_{i}\right)^{2}=1-\left(\frac{i}{n}\right)^{2}=1-\frac{i^{2}}{n^{2}}
$$

The width is $\Delta x=\frac{1}{n}$
One rectangle area height. width

$$
\begin{aligned}
& f\left(x_{i}\right) \Delta x \\
&\left(1-\frac{i^{2}}{n^{2}}\right) \cdot \frac{1}{n} \\
& \text { area } \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(1-\frac{i^{2}}{n^{2}}\right) \cdot \frac{1}{n} \\
&=\sum_{i=1}^{n}\left(\frac{1}{n}-\frac{i^{2}}{n^{3}}\right)
\end{aligned}
$$

$$
=\sum_{i=1}^{n} \frac{1}{n}-\sum_{i=1}^{n} \frac{i^{2}}{n^{3}}
$$

Noto $\sum_{i=1}^{n} \frac{1}{n}=\underbrace{\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}}_{n \text { times }}=n\left(\frac{1}{n}\right)=1$

Note $\sum_{i=1}^{n} \frac{1}{n}=\underbrace{\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}}_{n \text { tines }}=n\left(\frac{1}{n}\right)=1$
and $\sum_{i=1}^{n} \frac{i^{2}}{n^{3}}=\frac{1}{n^{3}}\left(1^{2}+2^{2}+\ldots+n^{2}\right)=\frac{1}{n^{3}} \frac{2 n^{3}+3 n^{2}+n}{6}$

So we have

$$
\text { area } \approx 1-\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}}
$$

To get the true area, toke $n \rightarrow \infty$

$$
\begin{aligned}
\text { area } & =\lim _{n \rightarrow \infty}\left(1-\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}}\left(\frac{\frac{1}{n^{3}}}{\frac{1}{n^{3}}}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{2+\frac{3}{n}+\frac{1}{n^{2}}}{6}\right) \\
& =1-\frac{2+0+0}{6}=1-\frac{2}{6}=1-\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

