
March 29 Math 2306 sec 58 Spring 2016
Section 11: Linear Mechanical Equations

Figure: In the absence of any displacement, the system is at equilibrium.
Displacement x(t) is measured from equilibrium x = 0.
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Building an Equation: Hooke’s Law
Newton’s Second Law: F = ma Force = mass times acceleration

a =
d2x
dt2 =⇒ F = m

d2x
dt2

Hooke’s Law: F = kx Force exerted by the spring is proportional to
displacement
The force imparted by the spring opposes the direction of motion.

m
d2x
dt2 = −kx =⇒ x ′′ + ω2x = 0 where ω =

√
k
m

Convention We’ll Use: Up will be positive (x > 0), and down will be
negative (x < 0). This orientation is arbitrary and follows the
convention in Trench.
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Appropriate Units
The two unit systems, US customary and SI, require quantities in
certain units.

force/ weight pounds (lb)
length feet (ft)
time seconds (sec)
mass slugs

Table: US units

force/ weight Newtons (N)
length meters (m)
time seconds (sec)
mass kilograms (kg)

Table: SI units
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Deducing Constants from Givens

We may need to analyze a problem and deduce various constants:
I If an object of weight W stretches a spring δx units, the spring

constant k satisfies

W = kδx =⇒ k =
W
δx

N/m, or lb/ft

I Given a mass (kg or slugs), we can deduce weight (N or lb)—or
vice versa

m =
W
g

⇐⇒ W = mg g, accel. due to gravity
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Obtaining ω: Displacment in Equilibrium

Let δx = length of spring w/ object − length of spring w/o object.

Displacement in equilibrium: Applying Hooke’s law with the weight
as force, we have

mg = kδx .

We observe that the value ω can be deduced from δx by

ω2 =
k
m

=
g
δx
.

This allows us to compute ω2 without knowing m or k IF δx is
known.
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Simple Harmonic Motion

x ′′ + ω2x = 0, x(0) = x0, x ′(0) = x1 (1)

Here, x0 and x1 are the initial position (relative to equilibrium) and
velocity, respectively. The solution is

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt)

called the equation of motion.

Note that equation (1) is a second order constant coefficient equation.
We can solve this IVP. Hence there is NO NEED to memorize the
solution!
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x(t) = x0 cos(ωt) + x1
ω sin(ωt)

Characteristics of the system include:

I the period T = 2π
ω ,

I the frequency f = 1
T = ω

2π
1

I the circular (or angular) frequency ω, and

I the amplitude or maximum displacement A =
√

x2
0 + (x1/ω)2

1Various authors call f the natural frequency and others use this term for ω.
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Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt) = A sin(ωt + φ)

requires

A =
√

x2
0 + (x1/ω)2,

and the phase shift φ must be defined by

sinφ =
x0

A
, with cosφ =

x1

ωA
.
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Initial Conditions

To have an IVP, initial information about position and velocity must be
given. We’ll keep in mind that

I Up is positive, and down is negative—this is the convention we’ll
use.

I If an object starts at equilibrium, then initial postion x(0) = 0.

I If an object starts from rest, then initial velocity x ′(0) = 0.
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Example

A 4 pound weight stretches a spring 6 inches. The mass is released
from a position 4 feet above equilibrium with an initial downward
velocity of 24 ft/sec. Find the equation of motion, the period, amplitude,
phase shift, and frequency of the motion. (Take g = 32 ft/sec2.)

We worked out the details and found that m = 1
8 slugs, k = 8 lb/ft, so

that ω2 = 64 per second squared. The IVP we found is

x ′′ + 64x = 0, x(0) = 4, x ′(0) = −24

having solution
x(t) = 4 cos(8t)− 3 sin(8t).

We stopped short of identifying the characteristics.

March 28, 2016 10 / 34



March 28, 2016 11 / 34



March 28, 2016 12 / 34



Free Damped Motion

Figure: If a damping force is added, we’ll assume that this force is
proportional to the instantaneous velocity.
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Free Damped Motion
Now we wish to consider an added force corresponding to
damping—friction, a dashpot, air resistance.

Total Force = Force of spring + Force of damping

m
d2x
dt2 = −βdx

dt
− kx =⇒ d2x

dt2 + 2λ
dx
dt

+ ω2x = 0

where

2λ =
β

m
and ω =

√
k
m
.

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

r2 + 2λr + ω2 = 0 with roots r1,2 = −λ±
√
λ2 − ω2.
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Case 1: λ2 > ω2 Overdamped

x(t) = e−λt
(

c1et
√
λ2−ω2

+ c2e−t
√
λ2−ω2

)

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may
be slow.
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Case 2: λ2 = ω2 Critically Damped

x(t) = e−λt (c1 + c2t)

Figure: One real root. No oscillations. Fastest approach to equilibrium.
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Case 3: λ2 < ω2 Underdamped

x(t) = e−λt (c1 cos(ω1t) + c2 sin(ω1t)) , ω1 =
√
ω2 − λ2

Figure: Complex conjugate roots. Oscillations occur as the system
approaches (resting) equilibrium.
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Comparison of Damping

Figure: Comparison of motion for the three damping types.
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Example
A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped.
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Example
A 3 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
12 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped. If the mass is released from the
equilibrium position with an upward velocity of 1 m/sec, solve the
resulting initial value problem.
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Driven Motion

We can consider the application of an external driving force (with or
without damping). Assume a time dependent force f (t) is applied to
the system. The ODE governing displacement becomes

m
d2x
dt2 = −βdx

dt
− kx + f (t), β ≥ 0.

Divide out m and let F (t) = f (t)/m to obtain the nonhomogeneous
equation

d2x
dt2 + 2λ

dx
dt

+ ω2x = F (t)
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Forced Undamped Motion and Resonance

Consider the case F (t) = F0 cos(γt) or F (t) = F0 sin(γt), and λ = 0.
Two cases arise

(1) γ 6= ω, and (2) γ = ω.

Taking the sine case, the DE is

x ′′ + ω2x = F0 sin(γt)

with complementary solution

xc = c1 cos(ωt) + c2 sin(ωt).
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x ′′ + ω2x = F0 sin(γt)

Note that

xc = c1 cos(ωt) + c2 sin(ωt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

xp = A cos(γt)+B sin(γt)
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