March 29 Math 2335 sec 51 Spring 2016

Section 5.2: Error in T_{n} and $S_{n}{ }^{1}$

Consider the partiaion $a=x_{0}<x_{1}<\cdots<x_{n}=b$ of equally spaced nodes with $h=x_{j+1}-x_{j}$. On the subinterval $\left[x_{j}, x_{j+1}\right]$ we have the error formula for P_{1} (assuming $f^{\prime \prime}$ exists)

$$
f(x)-P_{1}(x)=\frac{\left(x-x_{j}\right)\left(x-x_{j+1}\right)}{2} f^{\prime \prime}\left(c_{j}\right) \quad \text { for some } \quad x_{j} \leq c_{j} \leq x_{j+1}
$$

[^0]Error Formula for T_{n} (one subinterval)
Compute the integral.

$$
\begin{aligned}
& \int_{x_{j}}^{x_{j+1}} \frac{\left(x-x_{j}\right)\left(x-x_{j+1}\right)}{2} d x=\frac{1}{2} \int_{0}^{h} u(u-h) d u \text { where } u=x-x_{j} \\
& u=x-x_{j}, d u=d x, x-x_{j+1}=u+x_{j}-x_{j+1} \\
& =u-(\underbrace{\left(x_{j+1}-x_{j}\right)}_{h}=u-h \\
& \text { When } x=x_{j}, u=x_{j}-x_{j}=0 \\
& x=x_{j+1}, u=x_{j+1}-x_{j}=h \\
& \frac{1}{2} \int_{0}^{h} u(u-h) d u=\frac{1}{2} \int_{0}^{h}\left(u^{2}-u h\right) d u
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{u^{3}}{3}-\left.\frac{u^{2}}{2} h\right|_{0} ^{h}\right. \\
& =\frac{1}{2}\left[\frac{h^{3}}{3}-\frac{h^{2}}{2} \cdot h-0\right]=\frac{1}{2}\left[\frac{h^{3}}{3}-\frac{h^{3}}{2}\right] \\
& =\frac{1}{2}\left(-\frac{h^{3}}{6}\right)=\frac{-h^{3}}{12}
\end{aligned}
$$

Error Formula for T_{n} (over whole subinterval)

From the previous integral, the error over just the subinterval $\left[x_{j}, x_{j+1}\right]$ is found to be

$$
\begin{aligned}
\text { Error } & =\int_{x_{j}}^{x_{j+1}} f(x) d x-\int_{x_{j}}^{x_{j+1}} P_{1}(x) d x \\
& =\int_{x_{j}}^{x_{j+1}}\left(f(x)-P_{1}(x)\right) d x \\
& =-\frac{h^{3}}{12} f^{\prime \prime}\left(c_{j}\right)
\end{aligned}
$$

For some number $x_{j}<c_{j}<x_{j+1}$.
To get the error over the whole interval $[a, b]$, we use the additive property of integrals and sum

$$
-\frac{h^{3}}{12} f^{\prime \prime}\left(c_{0}\right)-\frac{h^{3}}{12} f^{\prime \prime}\left(c_{1}\right)-\cdots-\frac{h^{3}}{12} f^{\prime \prime}\left(c_{n-1}\right)
$$

Error E_{n}^{T} Formula for T_{n}
Writing

$$
\frac{h^{3}}{12}=\left(\frac{h^{2}}{12}\right) h
$$

we can add the errors from $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right]$, etc. together to get

$$
E_{n}^{T}(f)=-\frac{h^{2}}{12}\left[h f^{\prime \prime}\left(c_{0}\right)+h f^{\prime \prime}\left(c_{1}\right)+\cdots+h f^{\prime \prime}\left(c_{n-1}\right)\right]
$$

If we set $h=\Delta x$, then the bracketed expression is

$$
\begin{gathered}
f^{\prime \prime}\left(c_{0}\right) \Delta x+f^{\prime \prime}\left(c_{1}\right) \Delta x+\ldots+f^{\prime \prime}\left(c_{n-1}\right) \Delta x \\
=\sum_{i=0}^{n-1} f^{\prime \prime}\left(c_{i}\right) \Delta x
\end{gathered}
$$

We're using E for error with a superscript T for the rule and subscript n for the number of subintervals.

Error E_{n}^{T} Formula for T_{n}

Recognizing the expression in brackets [] as a Riemann sum, we have

$$
\begin{gathered}
E_{n}^{T}(f)=-\frac{h^{2}}{12}\left[h f^{\prime \prime}\left(c_{0}\right)+h f^{\prime \prime}\left(c_{1}\right)+\cdots+h f^{\prime \prime}\left(c_{n-1}\right)\right] \\
\approx-\frac{h^{2}}{12} \int_{a}^{b} f^{\prime \prime}(x) d x=\frac{-h^{2}}{12}\left[\left.f^{\prime}(x)\right|_{a} ^{b}\right. \\
=\frac{-h^{2}}{12}\left(f^{\prime}(b)-f^{\prime}(a)\right)
\end{gathered}
$$

By the Mean Value Theorem

$$
f^{\prime}(b)-f^{\prime}(a)=(b-a) f^{\prime \prime}(c), \quad \text { for some } \quad a \leq c \leq b
$$

Error E_{n}^{T} Formula for T_{n}

Our final error formula is

$$
E_{n}^{T}(f)=I(f)-T_{n}(f)=-\frac{h^{2}}{12}(b-a) f^{\prime \prime}(c)
$$

for some c between a and b.

Since $h=(b-a) / n$, we can express E_{n}^{\top} in terms of n as

$$
E_{n}^{T}(f)=-\frac{(b-a)^{3}}{12 n^{2}} f^{\prime \prime}(c) .
$$

We see that the error is proportional to $\frac{1}{n^{2}}$.

Example
Estimate the number of subintervals needed to guarantee an accuracy

$$
\left|E_{n}^{\top}(f)\right| \leq 10^{-4}
$$

for the integral

$$
I(f)=\int_{0}^{1} \frac{d x}{1+x}
$$

$\left|E_{n}^{\top}(f)\right|=\left|\frac{-(b-a)^{3}}{12 n^{2}} \cdot f^{\prime \prime}(c)\right|$ for some c between a and b.

$$
b=1, a=0 \quad f(x)=\frac{1}{1+x}, f^{\prime}(x)=\frac{-1}{(1+x)^{2}}, f^{\prime \prime}(x)=\frac{2}{(1+x)^{3}}
$$

$f^{\prime \prime}$ is decreasing so $\left|f^{\prime \prime}(c)\right| \leq\left|f^{\prime \prime}(0)\right|=\frac{2}{(1)^{2}}=2$

So

$$
\left|E_{n}^{\top}(f)\right| \leq \frac{1^{3}}{12 n^{2}} \cdot 2=\frac{1}{6 n^{2}} \text {, we reed } \frac{1}{6 n^{2}} \leq 10^{-4}
$$

This requires

$$
\begin{aligned}
& n^{2} \geqslant \frac{1}{6 \cdot 10^{-4}}=\frac{10^{4}}{6}=\frac{5000}{3} \\
& n \geqslant \sqrt{\frac{5000}{3}} \approx 40.82
\end{aligned}
$$

So $n=41$ will guarantee the desired accuracy.

Error in Trapezoid Rule

$$
I(f)=\int_{0}^{1} \frac{d x}{x+1}=\ln 2 \doteq 0.693147181
$$

n	T_{n}	E_{n}^{T}	$\left(E_{n}^{T}\right) /\left(E_{2 n}^{T}\right)$
2	0.70833333	-0.01518615	3.9174
4	0.69702381	-0.00387663	3.9774
8	0.69412185	-0.00097467	3.9942
16	0.693391202	-0.00024402	

Since $E_{n}^{T} \propto \frac{1}{n^{2}}$, doubling the number of subintervals reduces the error by a factor of 4 .

Error in Simpson's Rule E_{n}^{S}

A similar derivation shows that for f sufficiently differentiable,

$$
E_{n}^{S}(f)=I(f)-S_{n}(f)=-\frac{h^{4}}{180}(b-a) f^{(4)}(c)
$$

for some c between a and b. Since $h=(b-a) / n$, the above can be written as

$$
E_{n}^{S}(f)=-\frac{(b-a)^{5}}{180 n^{4}} f^{(4)}(c)
$$

Note that the payoff for using the more complicated Simpson's rule is that the error is proportional to $\frac{1}{n^{4}}$.

Example
Estimate the number of subintervals needed ${ }^{2}$ to guarantee an accuracy

$$
\left|E_{n}^{S}(f)\right| \leq 10^{-4}
$$

for the integral

$$
\begin{gathered}
I(f)=\int_{0}^{1} \frac{d x}{1+x} . \\
\left|E_{n}^{s}(f)\right|=\left|\frac{-(b-a)^{5}}{180 n^{4}} f^{(4)}(c)\right|, f^{\prime \prime}(x)=\frac{2}{(1+x)^{3}}, f^{\prime \prime \prime}(x)=\frac{-6}{(1+x)^{4}} \\
f^{(4)}(x)=\frac{24}{(1+x)^{5}}
\end{gathered}
$$

so $\left|f_{(c)}^{(4)}\right| \leqslant\left|f_{(0)}^{(4)}\right|=24$

$$
\begin{gathered}
\left|E_{n}^{s}(f)\right| \leqslant \frac{1^{5}}{180 n^{4}} \cdot 24=\frac{2}{15 n^{4}} \text {, we wort this } \\
\frac{2}{150^{-4}} \leqslant 10^{-4} \Rightarrow n^{4} \geqslant \frac{2}{15 \cdot 10^{-4}}=\frac{2 \cdot 10^{4}}{15}=\frac{4000}{3} \\
n \geqslant \sqrt[4]{\frac{4000}{3}} \approx 6.04
\end{gathered}
$$

Since n must be even, toking $n=8$ will give the desired accuracy.

Error in Simpson's Rule

$$
I(f)=\int_{0}^{1} \frac{d x}{x+1}=\ln 2
$$

n	S_{n}	E_{n}^{S}	$\left(E_{n}^{S}\right) /\left(E_{2 n}^{S}\right)$
2	0.69444444	-0.00129726	12.148
4	0.69325397	-0.00010679	14.529
8	0.69315453	-0.00000735	15.638
16	0.69314765	-0.00000047	

Since $E_{n}^{S} \propto \frac{1}{n^{4}}$, doubling the number of subintervals reduces the error by up to a factor of 16 .

Order of a Rule

Note that the errors have the form

$$
\text { Error } \approx \frac{c}{n^{p}}
$$

for some numbers p and c. In particular

$$
E_{n}^{T}(f)=\frac{c}{n^{2}}, \quad \text { and } \quad E_{n}^{S}(f)=\frac{c}{n^{4}}
$$

for many functions f.

We may refer to p as the order of the integration rule.

$$
\text { So } T \text { is order } 2 \text { and } S \text { is order } 4
$$

Richardson Extrapolation

Let an integration rule be denoted by I_{n} and have order p. The Richardson extrapolation formula for this integration rule is

$$
R_{2 n}=\frac{1}{2^{p}-1}\left(2^{p} I_{2 n}-I_{n}\right) .
$$

In particular, for the Trapezoid rule

$$
R_{2 n}=\frac{1}{3}\left(4 T_{2 n}-T_{n}\right) .
$$

In particular, for Simpson's rule

$$
R_{2 n}=\frac{1}{15}\left(16 S_{2 n}-S_{n}\right) .
$$

Richardson Extrapolation

The Richardson extrapolation formula for integration rule I_{n} of order p is

$$
R_{2 n}=\frac{1}{2^{p}-1}\left(2^{p} I_{2 n}-I_{n}\right) .
$$

Note: If you're computing $I_{2 n}$, then you've already found all of the necessary information to compute I_{n}. Then computing $R_{2 n}$ only requires two multiplications and one subtraction with numbers you've already found!

Example
Use the previous results for the Trapezoid rule to compute $R_{4}(f)$ for

$$
\int_{0}^{1} \frac{d x}{x+1}
$$

and compare the error of R_{4} to that of T_{8}.

$$
\text { For trapezoid } \quad \begin{aligned}
R_{4} & =\frac{1}{3}\left(4 T_{4}-T_{2}\right) \quad \begin{array}{c}
\text { using the } \\
\text { previous } \\
\text { table }
\end{array} \\
& =\frac{1}{3}(4 \cdot 0.69702381-0.70833333) \\
& =0.693253970
\end{aligned}
$$

$$
\begin{gathered}
E_{r r}\left(R_{4}\right)=\ln 2-R_{4} \doteq-0.00010679 \\
\operatorname{Rel}\left(R_{4}\right)=\frac{E_{r r}\left(R_{4}\right)}{\ln 2} \stackrel{1}{=} 0.000154 \\
E_{8}^{\top}(f)=-0.00097467 \\
\operatorname{Rel}\left(T_{8}(f)\right)^{\prime}=0.001406
\end{gathered}
$$

R_{4}

Example
Use the previous results for the Simpson's rule to compute $R_{4}(f)$ for

$$
\int_{0}^{1} \frac{d x}{x+1}
$$

and compare the error of R_{4} to that of S_{4}.
For Simpson's rule $\quad R_{4}=\frac{1}{15}\left(16 S_{4}-S_{2}\right)$

$$
\begin{aligned}
R_{4} & =\frac{1}{15}(16 \cdot 0.693253970-0.69444444) \\
& \vdots 0.693174605
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Err}\left(R_{4}\right)=\ln 2-R_{4}=-0.0000274 \\
& \operatorname{Rel}\left(R_{4}\right)=\frac{E_{r r}\left(R_{4}\right)}{\ln 2} \stackrel{1}{=}-0.0000396 t^{E_{4}^{5}(f)=-0.000107} \begin{array}{l}
R_{4} \text { goin } \\
\text { is about } \\
\text { a } \\
\text { faltor of }\left(S_{4}(f)\right)=0.000154 \\
f^{5}
\end{array}
\end{aligned}
$$

Section 5.3: Gaussian Quadrature

Consider the integral $I(f)=\int_{-1}^{1} f(x) d x^{3}$. Both the Trapezoid and Simpson's rule start with approximating f by a polynomial to obtain the rule. Both rules have a certain form.

$$
\begin{aligned}
T_{n}(f)= & \frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
& =w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+\cdots+w_{n-1} f\left(x_{n-1}\right)+w_{n} f\left(x_{n}\right)
\end{aligned}
$$

$$
=\sum \text { numbers } \cdot \text { function values. }
$$

[^1]
Gaussian Quadrature

Here we are going to approximate the integral $I(f)$ by the new rule called Gaussian Quadrature. The integration formula will be given by

$$
I_{n}(f)=\sum_{j=1}^{n} w_{j} f\left(x_{j}\right)
$$

where the numbers $\left\{w_{1}, \ldots, w_{n}\right\}$ are called the weights and $\left\{x_{1}, \ldots, x_{n}\right\}$ are called the nodes.

Main Idea: The weights and nodes are chosen so that $I_{n}(p)=I(p)$ exactly, for $p(x)$ any polynomial of degree as high as possible.

Gaussian Quadrature: $n=1$ Case

When $n=1$, the formula becomes

$$
I_{1}(f)=\sum_{j=1}^{1} w_{j} f\left(x_{j}\right)=w_{1} f\left(x_{1}\right)
$$

There is one weight w_{1} and one node x_{1}.

We need to determine two things, w_{1} and x_{1}, so we can impose two conditions. We'll insist that the formula is exact for all polynomials of degree 1-i.e. all polynomials of the form $p(x)=p_{0}+p_{1} x$.

Building Block of Polynomials

We note that a polynomial

$$
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{n} x^{n}
$$

is a linear combination (sum of constant multiples of) the basic building blocks

$$
1, \quad, x, x^{2}, \cdots, x^{n}
$$

Because integrating is a linear transformation

$$
\text { i.e. } \quad \int(\alpha f(x)+\beta g(x)) d x=\alpha \int f(x) d x+\beta \int g(x) d x
$$

we will use these building blocks to obtain our weights and nodes.

[^2] (see pg. 223 of our text).

Gaussian Quadrature: $n=1$ Case

$$
\int_{-1}^{1} f(x) d x \approx I_{n}(f)=w_{1} f\left(x_{1}\right)
$$

The formula should be exact for $p(x)=1$.

$$
\begin{aligned}
\int_{-1}^{1} p(x) d x=\int_{-1}^{1} 1 d x & =\left.x\right|_{-1} ^{1}=1-(-1)=2 \\
I_{1}(p)=\int_{-1}^{1} 1 d x & =w_{1} p\left(x_{1}\right)=2 \quad p\left(x_{1}\right)=1 \\
& \Rightarrow w_{1} \cdot 1=2 \quad \text { ie. } w_{1}=2
\end{aligned}
$$

Gaussian Quadrature: $n=1$ Case

$$
\int_{-1}^{1} f(x) d x \approx I_{n}(f)=w_{1} f\left(x_{1}\right)
$$

The formula should be exact for $p(x)=x$.

$$
\left.\begin{array}{rl}
\int_{-1}^{1} p(x) d x & =\int_{-1}^{1} x d x
\end{array}\right)=\left.\frac{x^{2}}{2}\right|_{-1} ^{1}=\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}=0 . \quad p\left(x_{1}\right)=x_{1} .
$$

Deduce the Guassian Quadrature formula $I_{1}(f)$

We found that $\int_{-1}^{1} 1 d x=2$ and $\int_{-1}^{1} x d x=0$.
Hence $w_{1}=2$ and $x_{1}=0$.
so $\quad I_{1}(f)=w_{1} f\left(x_{1}\right)=2 f(0)$

Gaussian Quadrature: $\int_{-1}^{1} f(x) d x \approx \iota_{1}(f)=2 f(0)$
Use $I_{1}(f)$ to approximate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$. Compare the result to the true value $\frac{\pi}{2}$.

Here $f(x)=\frac{1}{1+x^{2}}$ and $f(0)=\frac{1}{1+0^{2}}=1$

$$
\begin{aligned}
& \int_{-1}^{1} \frac{d x}{1+x^{2}} \approx I_{1}(f)=2 f(0)=2.1=2 \\
& \operatorname{Err}\left(I_{1}(f)\right)=\frac{\pi}{2}-2 \doteq-0.4292
\end{aligned}
$$

Gaussian Quadrature: $n=2$ Case

When $n=2$, the formula becomes

$$
I_{2}(f)=\sum_{j=1}^{2} w_{j} f\left(x_{j}\right)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right) .
$$

There are two weights $\left\{w_{1}, w_{2}\right\}$ and two nodes $\left\{x_{1}, x_{2}\right\}$.

We have four things to determine, so we can impose four conditions.

$$
\text { Cubics have four conditions } p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}
$$

Gaussian Quadrature: $n=2$ Case

We'll insist that the formula is exact for $p(x)=1, x, x^{2}$, and x^{3}.

$$
\begin{gathered}
\int_{-1}^{1} 1 d x=2=w_{1}+w_{2} \\
\int_{-1}^{1} x d x=0=w_{1} x_{1}+w_{2} x_{2} \\
\int_{-1}^{1} x^{2} d x=\frac{2}{3}=w_{1} x_{1}^{2}+w_{2} x_{2}^{2} \\
\int_{-1}^{1} x^{3} d x=0=w_{1} x_{1}^{3}+w_{2} x_{2}^{3}
\end{gathered}
$$

Since x_{1} and x_{2} are from $[-1,1]$, we can assume that $-1 \leq x_{1}<x_{2} \leq 1$. In fact, since our simple monomials all have symmetry (even or odd), it's safe to assume that x_{1} and x_{2} will be symmetric about zero.

Gaussian Quadrature: $n=2$ Case
We have four equations in four unknowns

$$
\begin{array}{r}
w_{1}+w_{2}=2 \\
w_{1} x_{1}+w_{2} x_{2}=0 \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2}=\frac{2}{3} \\
w_{1} x_{1}^{3}+w_{2} x_{2}^{3}=0 \tag{4}
\end{array}
$$

From (2), $w_{1} x_{1}=-w_{2} x_{2}$ and from (4) $w_{1} x_{1}^{3}=-w_{2} x_{2}^{3}$.
If $w_{1} \neq 0$ and $w_{2} \neq 0$ we can divide to get

$$
\frac{w_{1} x_{1}^{3}}{w_{1} x_{1}}=\frac{-w_{2} x_{2}^{3}}{-w_{2} x_{2}} \Rightarrow x_{1}^{2}=x_{2}^{2}
$$

So $x_{1}=-x_{2}$ or $x_{1}=x_{2}$

Then $\quad w_{1} x_{1}^{2}+w_{2}\left(-x_{1}\right)^{2}=\frac{2}{3}$

$$
\left(w_{1}+w_{2}\right) x_{1}^{2}=\frac{2}{3} \quad \text { but } w_{1}+w_{2}=2
$$

So $\quad x_{1}^{2}=\frac{1}{3} \Rightarrow x_{1}=\frac{-1}{\sqrt{3}}$ and $x_{2}=\frac{1}{\sqrt{3}}$

Also $w_{1} x_{1}=-w_{2} x_{2}=-w_{2}\left(-x_{1}\right)$

$$
w_{1} x_{1}=w_{2} x_{1} \quad \Rightarrow \quad w_{1}=w_{2}
$$

Since $w_{1}+w_{2}=2 \Rightarrow 2 w_{1}=2 \quad w_{1}=w_{2}=1$

The weights are $\omega_{1}=w_{2}=1$
the nodes ane

$$
x_{1}=\frac{-1}{\sqrt{3}}, \quad x_{2}=\frac{1}{\sqrt{3}} .
$$

[^0]: ${ }^{1}$ We consider only the case of an equally spaced partition.

[^1]: ${ }^{3}$ We can consider more general limits $[a, b]$ later.

[^2]: ${ }^{4}$ An alternative approach using the theory of orthogonal polynomials can be used

