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Section 5.2: Error in Tn and Sn
1

Consider the partiaion a = x0 < x1 < · · · < xn = b of equally spaced
nodes with h = xj+1 − xj . On the subinterval [xj , xj+1] we have the error
formula for P1 (assuming f ′′ exists)

f (x)− P1(x) =
(x − xj)(x − xj+1)

2
f ′′(cj) for some xj ≤ cj ≤ xj+1.

1We consider only the case of an equally spaced partition.
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Error Formula for Tn (one subinterval)
Compute the integral.∫ xj+1

xj

(x − xj)(x − xj+1)

2
dx =

1
2

∫ h

0
u(u − h)du where u = x − xj

March 28, 2016 2 / 49



March 28, 2016 3 / 49



Error Formula for Tn (over whole subinterval)
From the previous integral, the error over just the subinterval [xj , xj+1]
is found to be

Error =

∫ xj+1

xj

f (x)dx −
∫ xj+1

xj

P1(x)dx

=

∫ xj+1

xj

(f (x)− P1(x))dx

= −h3

12
f ′′(cj)

For some number xj < cj < xj+1.

To get the error over the whole interval [a,b], we use the additive
property of integrals and sum

−h3

12
f ′′(c0)−

h3

12
f ′′(c1)− · · · −

h3

12
f ′′(cn−1)
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Error ET
n Formula for Tn

Writing
h3

12
=

(
h2

12

)
h

we can add the errors from [x0, x1], [x1, x2], etc. together to get

ET
n (f ) = −h2

12
[
hf ′′(c0) + hf ′′(c1) + · · ·+ hf ′′(cn−1)

]

We’re using E for error with a superscript T for the rule and subscript n
for the number of subintervals.
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Error ET
n Formula for Tn

Recognizing the expression in brackets [ ] as a Riemann sum, we have

ET
n (f ) = −h2

12
[
hf ′′(c0) + hf ′′(c1) + · · ·+ hf ′′(cn−1)

]

≈ −h2

12

∫ b

a
f ′′(x)dx

By the Mean Value Theorem

f ′(b)− f ′(a) = (b − a)f ′′(c), for some a ≤ c ≤ b.
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Error ET
n Formula for Tn

Our final error formula is

ET
n (f ) = I(f )− Tn(f ) = −

h2

12
(b − a)f ′′(c)

for some c between a and b.

Since h = (b − a)/n, we can express ET
n in terms of n as

ET
n (f ) = −(b − a)3

12n2 f ′′(c).

We see that the error is proportional to 1
n2 .
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Example
Estimate the number of subintervals needed to guarantee an accuracy

|ET
n (f )| ≤ 10−4

for the integral

I(f ) =
∫ 1

0

dx
1 + x

.
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Error in Trapezoid Rule

I(f ) =
∫ 1

0

dx
x + 1

= ln 2 .
= 0.693147181

n Tn ET
n (ET

n )/(ET
2n)

2 0.70833333 −0.01518615 3.9174
4 0.69702381 −0.00387663 3.9774
8 0.69412185 −0.00097467 3.9942
16 0.693391202 −0.00024402

Since ET
n ∝ 1

n2 , doubling the number of subintervals reduces the error
by a factor of 4.
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Error in Simpson’s Rule ES
n

A similar derivation shows that for f sufficiently differentiable,

ES
n (f ) = I(f )− Sn(f ) = −

h4

180
(b − a)f (4)(c)

for some c between a and b. Since h = (b − a)/n, the above can be
written as

ES
n (f ) = −

(b − a)5

180n4 f (4)(c)

Note that the payoff for using the more complicated Simpson’s rule is
that the error is proportional to 1

n4 .
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Example
Estimate the number of subintervals needed2 to guarantee an
accuracy

|ES
n (f )| ≤ 10−4

for the integral

I(f ) =
∫ 1

0

dx
1 + x

.

2Recall that n must be even!
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Error in Simpson’s Rule

I(f ) =
∫ 1

0

dx
x + 1

= ln 2

n Sn ES
n (ES

n )/(ES
2n)

2 0.69444444 −0.00129726 12.148
4 0.69325397 −0.00010679 14.529
8 0.69315453 −0.00000735 15.638

16 0.69314765 −0.00000047

Since ES
n ∝ 1

n4 , doubling the number of subintervals reduces the error
by up to a factor of 16.
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Order of a Rule

Note that the errors have the form

Error ≈ c
np

for some numbers p and c. In particular

ET
n (f ) =

c
n2 , and ES

n (f ) =
c
n4

for many functions f .

We may refer to p as the order of the integration rule.
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Richardson Extrapolation
Let an integration rule be denoted by In and have order p. The
Richardson extrapolation formula for this integration rule is

R2n =
1

2p − 1
(
2pI2n − In

)
.

In particular, for the Trapezoid rule

R2n =
1
3
(4T2n − Tn) .

In particular, for Simpson’s rule

R2n =
1

15
(16S2n − Sn) .
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Richardson Extrapolation

The Richardson extrapolation formula for integration rule In of order p
is

R2n =
1

2p − 1
(
2pI2n − In

)
.

Note: If you’re computing I2n, then you’ve already found all of the
necessary information to compute In. Then computing R2n only
requires two multiplications and one subtraction with numbers you’ve
already found!
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Example
Use the previous results for the Trapezoid rule to compute R4(f ) for∫ 1

0

dx
x + 1

and compare the error of R4 to that of T8.

March 28, 2016 18 / 49



March 28, 2016 19 / 49



Example
Use the previous results for the Simpson’s rule to compute R4(f ) for∫ 1

0

dx
x + 1

and compare the error of R4 to that of S4.
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Section 5.3: Gaussian Quadrature

Consider the integral I(f ) =
∫ 1
−1 f (x)dx 3. Both the Trapezoid and

Simpson’s rule start with approximating f by a polynomial to obtain the
rule. Both rules have a certain form.

Tn(f ) =
h
2
[f (x0) + 2f (x1) + · · ·+ 2f (xn−1) + f (xn)]

= w0f (x0) + w1f (x1) + · · ·+ wn−1f (xn−1) + wnf (xn)

=
∑

numbers · function values.

3We can consider more general limits [a, b] later.
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Gaussian Quadrature

Here we are going to approximate the integral I(f ) by the new rule
called Gaussian Quadrature. The integration formula will be given by

In(f ) =
n∑

j=1

wj f (xj)

where the numbers {w1, . . . ,wn} are called the weights and
{x1, . . . , xn} are called the nodes.

Main Idea: The weights and nodes are chosen so that In(p) = I(p)
exactly, for p(x) any polynomial of degree as high as possible.
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Gaussian Quadrature: n = 1 Case

When n = 1, the formula becomes

I1(f ) =
1∑

j=1

wj f (xj) = w1f (x1).

There is one weight w1 and one node x1.

We need to determine two things, w1 and x1, so we can impose two
conditions. We’ll insist that the formula is exact for all polynomials of
degree 1—i.e. all polynomials of the form p(x) = p0 + p1x .
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Building Block of Polynomials
We note that a polynomial

p(x) = p0 + p1x + p2x2 + · · ·+ pnxn

is a linear combination (sum of constant multiples of) the basic building
blocks

1, , x , x2, · · · , xn

Because integrating is a linear transformation

i.e.
∫
(αf (x) + βg(x))dx = α

∫
f (x)dx + β

∫
g(x)dx

we will use these building blocks to obtain our weights and nodes. 4

4An alternative approach using the theory of orthogonal polynomials can be used
(see pg. 223 of our text).
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Gaussian Quadrature: n = 1 Case∫ 1

−1
f (x)dx ≈ In(f ) = w1f (x1)

The formula should be exact for p(x) = 1.

March 28, 2016 28 / 49



Gaussian Quadrature: n = 1 Case∫ 1

−1
f (x)dx ≈ In(f ) = w1f (x1)

The formula should be exact for p(x) = x .
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Deduce the Guassian Quadrature formula I1(f )

We found that
∫ 1
−1 1 dx = 2 and

∫ 1
−1 x dx = 0.
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Gaussian Quadrature:
∫ 1
−1 f (x)dx ≈ I1(f ) = 2f (0)

Use I1(f ) to approximate
∫ 1
−1

dx
1+x2 . Compare the result to the true

value π
2 .
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Gaussian Quadrature: n = 2 Case

When n = 2, the formula becomes

I2(f ) =
2∑

j=1

wj f (xj) = w1f (x1) + w2f (x2).

There are two weights {w1,w2} and two nodes {x1, x2}.

We have four things to determine, so we can impose four conditions.
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Gaussian Quadrature: n = 2 Case
We’ll insist that the formula is exact for p(x) = 1, x , x2, and x3.∫ 1

−1
1 dx = 2 = w1 + w2∫ 1

−1
x dx = 0 = w1x1 + w2x2∫ 1

−1
x2 dx =

2
3
= w1x2

1 + w2x2
2∫ 1

−1
x3 dx = 0 = w1x3

1 + w2x3
2

Since x1 and x2 are from [−1,1], we can assume that
−1 ≤ x1 < x2 ≤ 1. In fact, since our simple monomials all have
symmetry (even or odd), it’s safe to assume that x1 and x2 will be
symmetric about zero.
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Gaussian Quadrature: n = 2 Case
We have four equations in four unknowns

w1 + w2 = 2 (1)
w1x1 + w2x2 = 0 (2)

w1x2
1 + w2x2

2 =
2
3

(3)

w1x3
1 + w2x3

2 = 0 (4)
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