March 29 Math 2335 sec 51 Spring 2016

Section 5.2: Error in T_n and S_n^1

Consider the partiaion $a = x_0 < x_1 < \cdots < x_n = b$ of equally spaced nodes with $h = x_{j+1} - x_j$. On the subinterval $[x_j, x_{j+1}]$ we have the error formula for P_1 (assuming f'' exists)

$$f(x) - P_1(x) = \frac{(x - x_j)(x - x_{j+1})}{2} f''(c_j)$$
 for some $x_j \le c_j \le x_{j+1}$.

¹We consider only the case of an equally spaced partition.

Error Formula for T_n (one subinterval)

Compute the integral.

$$\int_{x_j}^{x_{j+1}} \frac{(x-x_j)(x-x_{j+1})}{2} \, dx = \frac{1}{2} \int_0^h u(u-h) \, du \quad \text{where} \quad u = x - x_j$$

$$u = x - x_{j}, du = dx, x - x_{j+1} = u + x_{j} - x_{j+1}$$

= u - (x_{j+1} - x_{j}) = u - h
when x = x_{j}, u = x_{j} - x_{j} = 0
x = x_{j+1}, u = x_{j+1} - x_{j} = h
$$\frac{1}{2} \int_{0}^{h} u(u - h) du = \frac{1}{2} \int_{0}^{h} (u^{2} - uh) du$$

March 28, 2016 2 / 49

$$= \frac{1}{2} \left[\frac{h^{3}}{3} - \frac{h^{2}}{2} h \right]_{0}^{h}$$

$$= \frac{1}{2} \left[\frac{h^{3}}{3} - \frac{h^{2}}{2} \cdot h - 0 \right] = \frac{1}{2} \left[\frac{h^{3}}{3} - \frac{h^{3}}{2} \right]$$

$$= \frac{1}{2} \left(-\frac{h^{3}}{6} \right) = -\frac{h^{3}}{12}$$

March 28, 2016 3 / 49

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Error Formula for T_n (over whole subinterval)

From the previous integral, the error over just the subinterval $[x_j, x_{j+1}]$ is found to be

Error =
$$\int_{x_j}^{x_{j+1}} f(x) dx - \int_{x_j}^{x_{j+1}} P_1(x) dx$$

= $\int_{x_j}^{x_{j+1}} (f(x) - P_1(x)) dx$
= $-\frac{h^3}{12} f''(c_j)$

For some number $x_j < c_j < x_{j+1}$.

To get the error over the whole interval [a, b], we use the additive property of integrals and sum

$$-\frac{h^{3}}{12}f''(c_{0})-\frac{h^{3}}{12}f''(c_{1})-\cdots-\frac{h^{3}}{12}f''(c_{n-1})$$

Error E_n^T Formula for T_n Writing

$$\frac{h^3}{12} = \left(\frac{h^2}{12}\right) h$$

we can add the errors from $[x_0, x_1]$, $[x_1, x_2]$, etc. together to get

$$E_n^T(f) = -\frac{h^2}{12} \left[hf''(c_0) + hf''(c_1) + \dots + hf''(c_{n-1}) \right]$$

$$= \sum_{i=0}^{n-1} f''(c_i) \Delta X$$

We're using *E* for error with a superscript *T* for the rule and subscript *n* for the number of subintervals.

Error E_n^T Formula for T_n

Recognizing the expression in brackets [] as a Riemann sum, we have

$$E_{n}^{T}(f) = -\frac{h^{2}}{12} \left[hf''(c_{0}) + hf''(c_{1}) + \dots + hf''(c_{n-1}) \right]$$
$$\approx -\frac{h^{2}}{12} \int_{a}^{b} f''(x) dx = -\frac{h^{2}}{12} \left[f'(x) \right]_{a}^{b}$$
$$= -\frac{h^{2}}{12} \left(f'(b) - f'(a) \right)$$

By the Mean Value Theorem

$$f'(b)-f'(a)=(b-a)f''(c), \quad ext{for some} \quad a\leq c\leq b.$$

March 28, 2016 6 / 49

イロト イポト イヨト イヨト

Error E_n^T Formula for T_n

Our final error formula is

$$E_n^T(f) = I(f) - T_n(f) = -\frac{h^2}{12}(b-a)f''(c)$$

for some *c* between *a* and *b*.

Since h = (b - a)/n, we can express E_n^T in terms of *n* as

$$E_n^T(f) = -\frac{(b-a)^3}{12n^2}f''(c).$$

We see that the error is proportional to $\frac{1}{n^2}$.

Example

Estimate the number of subintervals needed to guarantee an accuracy $|E_n^T(f)| \le 10^{-4}$

for the integral

$$I(f)=\int_0^1\frac{dx}{1+x}.$$

$$\begin{aligned} \left| E_{n}^{T}(f) \right| &= \left| \frac{-(b-a)^{3}}{12 n^{2}} \cdot f''(c) \right| & \text{for some } c \text{ between } a \text{ ond } b, \\ b &= 1, \ a &= 0 \qquad f(x) = \frac{1}{1+x} \ , \ f'(x) = \frac{-1}{(1+x)^{2}} \ , \ f''(x) = \frac{2}{(1+x)^{3}} \\ f'' \text{ is decreasing } so \qquad \left| f''(c) \right| &\leq \left| f''(a) \right| = \frac{2}{(1)^{2}} = 2 \end{aligned}$$

3

A D F A B F A B F A B F

So
$$|E_n^{T}(f)| \leq \frac{1^3}{12n^2} \cdot 2 = \frac{1}{6n^2}$$
, we need $\frac{1}{6n^2} \leq 10^4$

This requires
$$n^2 \gg \frac{1}{6 \cdot 10^{-4}} = \frac{10^4}{6} = \frac{5000}{3}$$

$$n \gg \sqrt{\frac{5000}{3}} \approx 40.82$$

March 28, 2016 9 / 49

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Error in Trapezoid Rule

$$I(f) = \int_0^1 \frac{dx}{x+1} = \ln 2 \doteq 0.693147181$$

n	T _n	E_n^T	$(E_n^T)/(E_{2n}^T)$
2	0.70833333	-0.01518615	3.9174
4	0.69702381	-0.00387663	3.9774
8	0.69412185	-0.00097467	3.9942
16	0.693391202	-0.00024402	

Since $E_n^T \propto \frac{1}{n^2}$, doubling the number of subintervals reduces the error by a factor of 4.

Error in Simpson's Rule E_n^S

A similar derivation shows that for *f* sufficiently differentiable,

$$E_n^S(f) = I(f) - S_n(f) = -\frac{h^4}{180}(b-a)f^{(4)}(c)$$

for some *c* between *a* and *b*. Since h = (b - a)/n, the above can be written as

$$E_n^S(f) = -\frac{(b-a)^5}{180n^4} f^{(4)}(c)$$

Note that the payoff for using the more complicated Simpson's rule is that the error is proportional to $\frac{1}{n^4}$.

March 28, 2016

11/49

Example

Estimate the number of subintervals needed² to guarantee an accuracy

$$|E_n^S(f)| \le 10^{-4}$$

for the integral

$$I(f)=\int_0^1\frac{dx}{1+x}.$$

$$|E_{n}^{s}(f)| = \left|\frac{\cdot (b-a)^{s}}{180 n^{4}} f^{(4)}(c)\right| , f^{''}(x) = \frac{2}{(1+x)^{3}} , f^{''}(x) = \frac{-6}{(1+x)^{4}}$$
$$f^{(4)}(x) = \frac{2^{4}}{(1+x)^{5}}$$

So
$$\left| f_{(c)}^{(u)} \right| \in \left| f_{(0)}^{(u)} \right| = ZY$$

²Recall that *n* must be even!

$$\left| E_{n}^{S}(f) \right| \leq \frac{1^{S}}{180 n^{4}} \cdot 24 = \frac{2}{15 n^{4}}, we wont this \leq 10^{-4}$$

$$\frac{2}{15 n^{4}} \leq 10^{-4} \implies n^{4} \geqslant \frac{2}{15 \cdot 10^{-4}} = \frac{2 \cdot 10^{7}}{15} = \frac{4000}{3}$$

$$n \geqslant \sqrt[4]{\frac{4000}{3}} \approx 6.04$$

March 28, 2016 13 / 49

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ ○ ○

Error in Simpson's Rule

$$l(f) = \int_0^1 \frac{dx}{x+1} = \ln 2$$

n	Sn	E_n^S	$(E_n^S)/(E_{2n}^S)$
2	0.6944444	-0.00129726	12.148
4	0.69325397	-0.00010679	14.529
8	0.69315453	-0.0000735	15.638
16	0.69314765	-0.0000047	

Since $E_n^S \propto \frac{1}{n^4}$, doubling the number of subintervals reduces the error by up to a factor of 16.

Order of a Rule

Note that the errors have the form

Error
$$\approx \frac{c}{n^p}$$

for some numbers *p* and *c*. In particular

$$E_n^T(f) = \frac{c}{n^2}$$
, and $E_n^S(f) = \frac{c}{n^4}$

< ロ > < 同 > < 回 > < 回 >

March 28, 2016

15/49

for many functions f.

We may refer to *p* as the **order** of the integration rule.

Richardson Extrapolation

Let an integration rule be denoted by I_n and have order p. The Richardson extrapolation formula for this integration rule is

$$R_{2n} = \frac{1}{2^p - 1} \left(2^p I_{2n} - I_n \right).$$

In particular, for the Trapezoid rule

$$R_{2n} = \frac{1}{3} (4T_{2n} - T_n).$$

In particular, for Simpson's rule

$$R_{2n} = rac{1}{15} \left(16S_{2n} - S_n \right).$$

イロト イポト イヨト イヨト

March 28, 2016

16/49

Richardson Extrapolation

The Richardson extrapolation formula for integration rule I_n of order p is

$$R_{2n} = \frac{1}{2^p - 1} \left(2^p I_{2n} - I_n \right).$$

Note: If you're computing I_{2n} , then you've already found all of the necessary information to compute I_n . Then computing R_{2n} only requires two multiplications and one subtraction with numbers you've already found!

Example

Use the previous results for the **Trapezoid** rule to compute $R_4(f)$ for

$$\int_0^1 \frac{dx}{x+1}$$

and compare the error of R_4 to that of T_8 .

For trapezoid Ry = 1/3 (4Ty - Tz)

March 28, 2016 18 / 49

$$E_{rr}(R_{y}) = l_{n2} - R_{y} \doteq -0.00010679$$

$$Rel(R_{y}) = \frac{E_{rr}(R_{y})}{l_{n2}} \doteq 0.000154 \text{ Ky}$$

$$E_{g}^{T}(f) \doteq -0.00097467$$

$$Rel(T_{g}(f)) \doteq 0.001406 \text{ Ky}$$

$$ID$$

March 28, 2016 19 / 49

・ロト・西ト・ヨト・ヨー うへの

Example

Use the previous results for the **Simpson's** rule to compute $R_4(f)$ for

$$\int_0^1 \frac{dx}{x+1}$$

and compare the error of R_4 to that of S_4 .

For Simpson's rule
$$R_{y} = \frac{1}{15} (16S_{y} - S_{z})$$

 $R_{y} = \frac{1}{15} (16 \cdot 0.693253970 - 0.69444444)$
 $\stackrel{!}{=} 0.693174605$

$$Err(R_{y}) = \ln 2 - R_{y} \stackrel{!}{=} -0.0000274$$

$$R_{u}(R_{y}) = \frac{Err(R_{u})}{\ln 2} \stackrel{!}{=} -0.0000396$$

$$R_{y}g^{oin}$$

$$E_{y}^{s}(f) = -0.000107$$

$$R_{u}(s_{y}(f)) = -0.000154$$

$$Q$$

March 28, 2016 22 / 49

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Section 5.3: Gaussian Quadrature

Consider the integral $I(f) = \int_{-1}^{1} f(x) dx^3$. Both the Trapezoid and Simpson's rule start with approximating *f* by a polynomial to obtain the rule. Both rules have a certain form.

$$T_n(f) = \frac{h}{2}[f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)]$$

= $w_0 f(x_0) + w_1 f(x_1) + \dots + w_{n-1} f(x_{n-1}) + w_n f(x_n)$
= $\sum \text{numbers} \cdot \text{function values.}$

³We can consider more general limits [a, b] later.

Gaussian Quadrature

Here we are going to approximate the integral I(f) by the new *rule* called **Gaussian Quadrature**. The integration formula will be given by

$$I_n(f) = \sum_{j=1}^n w_j f(x_j)$$

where the numbers $\{w_1, \ldots, w_n\}$ are called the **weights** and $\{x_1, \ldots, x_n\}$ are called the **nodes**.

Main Idea: The weights and nodes are chosen so that $I_n(p) = I(p)$ exactly, for p(x) any polynomial of degree as high as possible.

Gaussian Quadrature: n = 1 Case

When n = 1, the formula becomes

$$I_1(f) = \sum_{j=1}^{1} w_j f(x_j) = w_1 f(x_1).$$

There is one weight w_1 and one node x_1 .

We need to determine two things, w_1 and x_1 , so we can impose two conditions. We'll insist that the formula is exact for all polynomials of degree 1—i.e. all polynomials of the form $p(x) = p_0 + p_1 x$.

March 28, 2016 26 / 49

Building Block of Polynomials

We note that a polynomial

$$p(x) = p_0 + p_1 x + p_2 x^2 + \cdots + p_n x^n$$

is a linear combination (sum of constant multiples of) the basic building blocks

$$1, \quad , x, \quad x^2, \quad \cdots, \quad x^n$$

Because integrating is a linear transformation

i.e.
$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

we will use these building blocks to obtain our weights and nodes. ⁴

⁴An alternative approach using the theory of orthogonal polynomials can be used (see pg. 223 of our text).

March 28, 2016

27/49

Gaussian Quadrature: n = 1 Case

$$\int_{-1}^{1} f(x) dx \approx I_n(f) = w_1 f(x_1)$$

The formula should be exact for p(x) = 1.

$$\int_{-1}^{1} \rho(x) \, dx = \int_{-1}^{1} 1 \, dx = x \int_{-1}^{1} = 1 - (-1) = 2$$

$$T_{1}(\rho) = \int_{-1}^{1} 1 \, dx = w_{1} \rho(x_{1}) = 2 \qquad \rho(x_{1}) = 1$$

$$\Rightarrow w_{1} \cdot 1 = 2 \qquad i.e. \qquad w_{1} = 2$$

March 28, 2016 28 / 49

<ロ> <四> <四> <四> <四> <四</p>

Gaussian Quadrature: n = 1 Case

$$\int_{-1}^1 f(x)\,dx\approx I_n(f)=w_1f(x_1)$$

The formula should be exact for p(x) = x.

$$\int_{-1}^{1} \rho(x) dx = \int_{-1}^{1} x dx = \frac{x^{2}}{2} \int_{-1}^{1} z \frac{i^{2}}{2} - \frac{(-i)^{2}}{2} = 0$$

$$\prod_{-1}^{1} (\rho) = \int_{-1}^{1} \rho(x) dx = w_{1} \rho(x_{1}) = 0 \qquad \rho(x_{1}) = X_{1}$$

$$= \sum_{-1}^{1} Z X_{1} = 0 \implies X_{1} = 0$$

March 28, 2016 29 / 49

<ロト <回 > < 回 > < 回 > < 回 > … 回

Deduce the Guassian Quadrature formula $I_1(f)$

We found that $\int_{-1}^{1} 1 \, dx = 2$ and $\int_{-1}^{1} x \, dx = 0$.

$$z_{0}$$
 $T'(t) = m' t(x') = 5 t(0)$

March 28, 2016 30 / 49

イロト 不得 トイヨト イヨト 二日

Gaussian Quadrature: $\int_{-1}^{1} f(x) dx \approx I_1(f) = 2f(0)$

Use $I_1(f)$ to approximate $\int_{-1}^{1} \frac{dx}{1+x^2}$. Compare the result to the true value $\frac{\pi}{2}$.

Here
$$f(x) = \frac{1}{1+x^2}$$
 and $f(0) = \frac{1}{1+0^2} = 1$

$$\int_{-1}^{1} \frac{dx}{1+x^2} \approx T_1(f) = 2f(0) = 2 \cdot 1 = 2$$
Err $(T_1(f)) = \frac{\pi}{2} - 2 = -0.4292$

۰.

Gaussian Quadrature: n = 2 Case

When n = 2, the formula becomes

$$I_2(f) = \sum_{j=1}^2 w_j f(x_j) = w_1 f(x_1) + w_2 f(x_2).$$

There are two weights $\{w_1, w_2\}$ and two nodes $\{x_1, x_2\}$.

We have four things to determine, so we can impose four conditions.

March 28, 2016

33/49

Gaussian Quadrature: n = 2 Case

We'll insist that the formula is exact for $p(x) = 1, x, x^2$, and x^3 .

$$\int_{-1}^{1} 1 \, dx = 2 = w_1 + w_2$$
$$\int_{-1}^{1} x \, dx = 0 = w_1 x_1 + w_2 x_2$$
$$\int_{-1}^{1} x^2 \, dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2$$
$$\int_{-1}^{1} x^3 \, dx = 0 = w_1 x_1^3 + w_2 x_2^3$$

Since x_1 and x_2 are from [-1, 1], we can assume that $-1 \le x_1 < x_2 \le 1$. In fact, since our simple monomials all have symmetry (even or odd), it's safe to assume that x_1 and x_2 will be symmetric about zero.

Gaussian Quadrature: n = 2 Case

We have four equations in four unknowns

$$w_1 + w_2 = 2$$
 (1)

$$w_1 x_1 + w_2 x_2 = 0 (2)$$

$$w_1 x_1^2 + w_2 x_2^2 = \frac{2}{3}$$
 (3)

$$w_1 x_1^3 + w_2 x_2^3 = 0 (4)$$

From (2),
$$W_1 X_1 = -W_2 X_2$$
 and from (4) $W_1 X_1^3 = -W_2 X_2^3$.
If $W_1 \neq 0$ and $W_2 \neq 0$ we can divide to get
 $\frac{W_1 X_1^3}{W_1 X_1} = \frac{-W_2 X_2^3}{-W_2 X_2} \implies X_1^2 = X_2^2$

March 28, 2016 35 / 49

< ロ > < 同 > < 回 > < 回 >

So
$$X_1 = -X_2$$
 or $X_1 = X_2$
Then $W_1 X_1^2 + W_2(-X_1)^2 = \frac{2}{3}$
 $(W_1 + W_2) X_1^2 = \frac{2}{3}$ but $W_1 + U_2 = 2$
So $X_1^2 = \frac{1}{3} \implies X_1 = \frac{-1}{\sqrt{3}}$ and $X_2 = \frac{1}{\sqrt{3}}$
Also $W_1 X_1 = -W_2 X_2 = -W_2(-X_1)$
 $W_1 X_1 = W_2 X_1 \implies W_1 = W_2$

March 28, 2016 36 / 49

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

Since
$$W_1 + W_2 = 2 \implies 2W_1 = 2 = W_1 = W_2 = 1$$

the rodes are

$$\chi_1 = \frac{-1}{\sqrt{3}}$$
, $\chi_2 = \frac{1}{\sqrt{3}}$.

March 28, 2016 37 / 49

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○