March 29 Math 3260 sec. 55 Spring 2018

Section 6.1: Inner Product, Length, and Orthogonality

We defined the inner product on \mathbb{R}^{n} :
Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[u_{1} u_{2} \cdots u_{n}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

We'll use the notation $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v}$.

Properties of the Inner Product \& Norm

Theorem: For \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} and real scalar c
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(c) $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
(d) $\mathbf{u} \cdot \mathbf{u} \geq 0$, with $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

Definition: The norm of the vector \mathbf{v} in \mathbb{R}^{n} is the nonnegative number denoted and defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are the components of \mathbf{v}.

Unit Vectors and Normalizing

Theorem: For vector \mathbf{v} in \mathbb{R}^{n} and scalar c

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\| .
$$

Definition: A vector \mathbf{u} in \mathbb{R}^{n} for which $\|\mathbf{u}\|=1$ is called a unit vector.
Remark: Given any nonzero vector \mathbf{v} in \mathbb{R}^{n}, we can obtain a unit vector \mathbf{u} in the same direction as \mathbf{v}

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

This process, of dividing out the norm, is called normalizing the vector V.

Distance in \mathbb{R}^{n} \& Orthogonality

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is denoted and defined by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Definition: Two vectors are \mathbf{u} and \mathbf{v} orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
Perpendicular: If nonzero vectors \mathbf{u} and \mathbf{v} are perpendicular in \mathbb{R}^{n}, then $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$. This is the case if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

The Pythagorean Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} .
$$

Orthogonal Complement

Definition: Let W be a subspace of \mathbb{R}^{n}. A vector \mathbf{z} in \mathbb{R}^{n} is said to be orthogonal to W if \mathbf{z} is orthogonal to every vector in W.

$$
\vec{z} \cdot \vec{W}=0 \text { for every } \vec{W} \text { in } W
$$

Definition: Given a subspace W of \mathbb{R}^{n}, the set of all vectors orthogonal to W is called the orthogonal complement of W and is denoted by

$$
\begin{gathered}
W^{\perp} . \\
\text { Rod as "W perp" }
\end{gathered}
$$

Theorem:
we need to show that $\overrightarrow{0}$ is in W^{\perp} and that W^{\perp}
W^{\perp} is a subspace of \mathbb{R}^{n}. is closed under vector addition and scalar multiplication.

Since $\overrightarrow{0} \cdot \vec{w}=0$ for every \vec{w} in $W, \overrightarrow{0}_{0}$ is in W^{\perp}.
To see that it's closed under vector addition, suppose \vec{u} and \vec{v} ave in W^{\perp}. Then
$\vec{u} \cdot \vec{w}=0$ and $\vec{v} \cdot \vec{w}=0$ for every \vec{w} in W.
Note that for any \vec{W} in W

$$
(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}=0+0=0
$$

So $\vec{u}+\vec{v}$ is in W^{\perp} which is closed under vector addition.

Letting c be my scaler and \vec{w} only vector in W,

$$
(c \vec{u}) \cdot \vec{w}=c(\vec{u} \cdot \vec{w})=c(0)=0
$$

Hence $\vec{C} \vec{G}$ is in W^{\perp} which is closed under scala an multiplication.

It follows that W^{\perp} is a subspace of R^{n}

Example
Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Show that $W^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$. Give a geometric interpretation of W and W^{\perp} as subspaces of \mathbb{R}^{3}.

If \vec{W} is any vector in W, then
$\vec{w}=a\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+b\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right]$ for some scales a, b.
If $\vec{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ is orthogond to W, then $\vec{u} \cdot \vec{w}=0$.

$$
\vec{u} \cdot \vec{w}=u_{1} a+u_{2}(0)+u_{3} b=0 \text { for any } a_{1} b \text {. }
$$

$$
u_{1} a+u_{3} b=0
$$

for all choices of a, b.
If $a=1$ and $b=0$, we conclude that

$$
u_{1} \cdot 1+u_{0} \cdot 0=0 \Rightarrow u_{1}=0
$$

If $a=0$ and $b=1$, we conchide that

$$
u_{1} \cdot 0+u_{3} \cdot 1=0 \quad \Rightarrow \quad u_{3}=0
$$

So \vec{U} has to have the form

$$
\vec{u}=\left[\begin{array}{l}
0 \\
u_{2} \\
0
\end{array}\right]=u_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { with } u_{2} \text { any red }
$$

So

$$
W^{\perp}=\operatorname{spon}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

As for geometry, $w=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
This is the $x z$-plane j del points $(x, 0, z)$.
And $W^{\perp}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
This is the y-axis j
all points $(0, b, 0)$.

x

Example
Let $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -2 & 0 & 4\end{array}\right]$. Show that if \mathbf{x} is in $\operatorname{Nul}(A)$, then \mathbf{x} is in $[\operatorname{Row}(A)]^{\perp}$.
$\operatorname{rret}\left[\begin{array}{lll}1 & 0 & -2\end{array}\right]$ For \vec{x} in $N l A$
$A \rightarrow$ ret $\left[\begin{array}{lll}1 & 0 & -2 \\ 0 & 1 & \frac{4}{3}\end{array}\right]$

$$
\begin{aligned}
& x_{1}=2 x_{3} \\
& x_{2}=\frac{-4}{3} x_{3}
\end{aligned}
$$

\vec{x} in Nell $A \quad \vec{x}=x_{3}\left[\begin{array}{c}2 \\ \frac{-4}{3} \\ 1\end{array}\right]$
Also Row $A=\operatorname{spon}\left\{\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ \frac{4}{3}\end{array}\right]\right\}$

Letting, \vec{w} be in Row A. Then
$\vec{w}=a\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]+b\left[\begin{array}{c}0 \\ 1 \\ \frac{4}{3}\end{array}\right]$ for sone scales For \vec{x} in NulA, $\vec{x}=C\left[\begin{array}{c}2 \\ \frac{-4}{3} \\ 1\end{array}\right]$.

$$
\vec{x} \cdot \vec{w}=c\left[\begin{array}{c}
2 \\
\frac{-4}{3} \\
1
\end{array}\right] \cdot\left(a\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]+b\left[\begin{array}{c}
0 \\
1 \\
4 / 3
\end{array}\right]\right)
$$

$$
\begin{aligned}
& =a c\left[\begin{array}{c}
2 \\
-\frac{4}{3} \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]+c b\left[\begin{array}{c}
2 \\
\frac{-4}{3} \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
1 \\
4 / 3
\end{array}\right] \\
& =a c(2-2)+c b\left(-\frac{4}{3}+\frac{4}{3}\right) \\
& =0+0 \\
& =0
\end{aligned}
$$

Everything in NulA is orthogond to everything in Row A. Hence $N u l A=[\text { Row } A]^{\perp}$

Theorem

Theorem: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A. That is

$$
[\operatorname{Row}(A)]^{\perp}=\operatorname{Nul}(A) .
$$

The orthongal complement of the column space of A is the null space of A^{T}-i.e.

$$
[\operatorname{Col}(A)]^{\perp}=\operatorname{Nul}\left(A^{T}\right)
$$

Example: Find the orthogonal complement of $\operatorname{Col}(A)$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
5 & 2 & 1 \\
-3 & 3 & 0 \\
2 & 4 & 1 \\
2 & -2 & 9 \\
0 & 1 & -1
\end{array}\right] \\
& \text { we con use that } \\
& {[\operatorname{col} A]^{\perp}=\operatorname{Nal}\left(A^{\top}\right) .} \\
& A^{\top} \xrightarrow{\text { ref }}\left[\begin{array}{ccccc}
1 & 0 & 0 & -54 & 7 \\
0 & 1 & 0 & \frac{-146}{3} & 19 / 3 \\
0 & 0 & 1 & 63 & -8
\end{array}\right] \\
& \text { For } A^{\top} \vec{x}=\overrightarrow{0} \quad x_{1}=54 x_{4}-7 x_{5} \\
& x_{2}=\frac{146}{3} x_{4}-\frac{19}{3} x_{5} \quad x_{4}, x_{5} \text {-free } \\
& x_{3}=-63 x_{4}+8 x_{5}
\end{aligned}
$$

$$
\vec{x}=X_{4}\left[\begin{array}{c}
54 \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right]+X_{5}\left[\begin{array}{c}
-7 \\
\frac{-19}{3} \\
8 \\
0 \\
1
\end{array}\right]
$$

So

$$
[\operatorname{col} A]^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}
54 \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
-\frac{19}{3} \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

This is actually a basis.

Recall the Law of Cosines

For triangle with angles A, B, C and opposite sides of lengths a, b, and c, respectively,

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$

Geometry of the Dot Product

Figure: We can use the law of cosines to show that in \mathbb{R}^{2} that $\mathbf{u} \cdot \mathbf{v}$ is related to the angle between the two (nonzero) vectors. This holds in \mathbb{R}^{n}. We're just restricting n to 2 for ease of computation.

By the low of Cosines

$$
\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

From before, we know that

$$
\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2 \vec{u} \cdot \vec{v} .
$$

Compering

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

If \vec{u} and \vec{v} are nonzero, the angle between them satisfies

$$
\operatorname{Cos} \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}
$$

Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a subspace W of \mathbb{R}^{n}, then each vector \mathbf{x} in W can be realized (uniquely) as a sum

$$
\mathbf{x}=c_{1} \mathbf{b}_{2}+\cdots+c_{p} \mathbf{b}_{p}
$$

If n is very large, the computations needed to determine the coefficients c_{1}, \ldots, c_{p} may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

Orthogonal Sets

Definition: An indexed set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal. That is, provided

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } \quad i \neq j .
$$

Example: Show that the set $\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal set.
hovel them
$\vec{u}_{1} \quad \vec{u}_{2} \quad \vec{u}_{3}$

$$
\vec{u}_{1} \cdot \vec{u}_{2}=3(-1)+1(2)+1(1)=-3+3=0
$$

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]\right\} \\
& \vec{u}_{1} \cdot \vec{u}_{3}=3(-1)+1(-4)+1(7)=-7+7=0 \\
& \vec{u}_{2} \cdot \vec{u}_{3}=(-1)(-1)+2(-4)+1(7)=8-8=0
\end{aligned}
$$

Orthogonal Basis

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal set.

Theorem: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then each vector \mathbf{y} in W can be written as the linear combination

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where the weights }
$$

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} \cdot=\frac{\vec{y} \cdot \vec{u}_{j}}{\left\|\vec{u}_{j}\right\|^{2}}
$$

$\begin{array}{lll}\vec{u}_{1} & \dot{u}_{2} & \vec{u}_{3}\end{array}$
Example
$\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal basis of \mathbb{R}^{3}. Express the vector $\mathbf{y}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right]$ as a linear combination of the basis vectors.

We need $\left\|u_{j}\right\|^{2}$ and $\vec{y} \cdot \vec{u}_{j}$

$$
\begin{array}{ll}
\left\|\vec{u}_{1}\right\|^{2}=3^{2}+1^{2}+1^{2}=11 & \vec{y} \cdot \vec{u}_{1}=-6+3=-3 \\
\left\|\vec{u}_{2}\right\|^{2}=(-1)^{2}+2^{2}+1^{2}=6 & \vec{y} \cdot \vec{u}_{2}=2+6=8 \\
\left\|\vec{u}_{3}\right\|^{2}=(-1)^{2}+(-4)^{2}+7^{2}=66 & \vec{y} \cdot \vec{u}_{3}=2-12=-10
\end{array}
$$

So

$$
\begin{aligned}
& \vec{y}=\frac{-3}{11} \vec{u}_{1}+\frac{8}{6} \vec{u}_{2}-\frac{10}{66} \vec{u}_{3} \\
& \vec{y}=\frac{-3}{11} \vec{u}_{1}+\frac{4}{3} \vec{u}_{2}-\frac{5}{33} \vec{u}_{3}
\end{aligned}
$$

Projection

Given a nonzero vector u, suppose we wish to decompose another nonzero vector \mathbf{y} into a sum of the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

in such a way that $\hat{\mathbf{y}}$ is parallel to \mathbf{u} and \mathbf{z} is perpendicular to \mathbf{u}.

Projection
Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u}, there is a scalar α such that

$$
\hat{\mathbf{y}}=\alpha \mathbf{u} .
$$

we hove $\vec{y}=\hat{y}+\vec{z}$ with $\hat{y}=\alpha \vec{u}$ and \vec{z} perpendicular to \vec{u}.

$$
\begin{aligned}
\vec{y} & =\alpha \vec{u}+\vec{z} \\
\vec{u} \cdot \vec{y} & =\vec{u} \cdot(\alpha \vec{u}+\vec{z})=\alpha \vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{z}^{\prime \prime} \\
\Rightarrow \quad \vec{u} \cdot \vec{y} & =\alpha(\vec{u} \cdot \vec{u}) \\
\Rightarrow \quad & \alpha=\frac{\vec{u} \cdot \vec{y}}{\vec{u} \cdot \vec{u}}
\end{aligned}
$$

Projection onto the subspace $L=\operatorname{Span}\{\mathbf{u}\}$

$$
\text { Notation: } \quad \hat{\mathbf{y}}=\operatorname{proj}_{L}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

Example: Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is in $\operatorname{Span}\{\mathbf{u}\}$ and \mathbf{z} is orthogonal to \mathbf{u}.

$$
\begin{aligned}
& \hat{y}=\frac{\vec{y} \cdot \vec{u}}{\|\vec{L}\|^{2}} \vec{u}=\frac{40}{20} \vec{u}=2\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
& \text { From } \vec{y}=\hat{y}+\vec{z}, \vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& \text { so } \vec{y}=\left[\begin{array}{l}
8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Example Continued...
Determine the distance between the point $(7,6)$ and the line $\operatorname{Span}\{\mathbf{u}\}$.

