March 29 Math 3260 sec. 55 Spring 2018

Section 6.1: Inner Product, Length, and Orthogonality
We defined the inner product on R":

Definition: For vectors u and v in R” we define the inner product of u
and v (also called the dot product) by the matrix product

V4

V2

u'v=1[utp - up = U1Vy + UpVo + - + UpVp.

Vn
We'll use the notation u-v = u’v.
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Properties of the Inner Product & Norm
Theorem: For u, vand win R"” and real scalar ¢
(@ u-v=v-u

b) (u+v) - w=u-w+v-w

(c) c(u-v)=(cu)-v=u-(cv)

(d) u-u>0,withu-u=0ifandonly ifu=0.

Definition: The norm of the vector v in R” is the nonnegative number
denoted and defined by

V| =VV-v=1/VZ+VE+ - 4+ V2
where vy, vo, .. ., v, are the components of v.

March 28, 2018 2/37



Unit Vectors and Normalizing
Theorem: For vector v in R” and scalar ¢

levll = lelf[v]-

Definition: A vector u in R” for which |ju|| = 1 is called a unit vector.

Remark: Given any nonzero vector v in R"”, we can obtain a unit
vector u in the same direction as v
v

u=—-.
vl

This process, of dividing out the norm, is called normalizing the vector
2
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Distance in R” & Orthogonality

Definition: For vectors u and v in R”, the distance between u and v
is denoted and defined by

dist(u,v) = [ju — v||.

Definition: Two vectors are u and v orthogonal if u-v = 0.

Perpendicular: If nonzero vectors u and v are perpendicular in R”,
then |ju — v|| = |ju + v||. This is the case if and only ifu - v = 0.

The Pythagorean Theorem: Two vectors u and v are orthogonal if

and only if
2 2 2
lu+v[= = [Jul]* + [lv]*.
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Orthogonal Complement
Definition: Let W be a subspace of R”. A vector z in R" is said to be
orthogonal to W if z is orthogonal to every vector in W.

\W

—

)2.\,4=O Le every W

Definition: Given a subspace W of R”, the set of all vectors
orthogonal to W is called the orthogonal complement of W and is
denoted by

w-+.

n "
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Example

1 0 0
Let WSpan{ { 0 ] , { 0 ] } Show that W+ Span{ { 1 }
0 1 0

Give a geometric interpretation of W and W+ as subspaces of R3.
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Example

Let A= [ o g : ] Show that if x is in NuI(A), then X is in
[Row(A)]- o 7 NaA
rrc" ) o -2
A - y X, = ZX3
o \ =z -y
X2= -—?-Xg
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Theorem

Theorem: Let Abe an m x n matrix. The orthogonal complement of
the row space of A is the null space of A. That is

[Row(A)]* = Nul(A).
The orthongal complement of the column space of A is the null space

of AT—i.e.
[Col(A)]* = Nul(AT).
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Example: Find the orthogonal complement of Col(A)
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Recall the Law of Cosines
For triangle with angles A, B, C and opposite sides of lengths a, b, and
c, respectively,

c® = & + b? — 2abcos(C)

A
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Geometry of the Dot Product
&
N N

)
g) Vv

u
Vel

Figure: We can use the law of cosines to show that in R? that u - v is related
to the angle between the two (nonzero) vectors. This holds in R"”. We’re just
restricting n to 2 for ease of computation.
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Section 6.2: Orthogonal Sets

Remark: We know that if B = {by,..., by} is a basis for a subspace
W of R", then each vector x in W can be realized (uniquely) as a sum

X = cibs + - - + cpbp.

If nis very large, the computations needed to determine the
coefficients ¢y, ..., ¢, may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task?
And what properties should such a basis possess?
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Orthogonal Sets
Definition: An indexed set {uy,...,up} in R" is said to be an

orthogonal set provided each pair of distinct vectors in the set is
orthogonal. That is, provided

u;-u;=0 whenever i#].

3 -1 -1
Example: Show that the set { { 1 ] , { 2 ] , { -4 ] } is an
1 1 7

orthogonal set.
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ﬁ.'—‘;\z = D4 1D« 1y = 3+3 =0
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OrthOGJOr\a,Q @as‘\s

Definition: An orthogonal basis for a subspace W of R" is a basis
that is also an orthogonal set.

Theorem: Let {uy,...,up} be an orthogonal basis for a subspace W
of R". Then each vector y in W can be written as the linear
combination

Yy = CiUy + CoUz + - - - + CpUp, Where the weights

Yy C)-U\’j

ci = o
1 TR
u; - u;

l\_(:\d e
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Projection

Given a nonzero vector u, suppose we wish to decompose another
nonzero vector y into a sum of the form

y=y+z

in such a way that y is parallel to u and z is perpendicular to u.
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Projection

Since y is parallel to u, there is a scalar « such that
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Projection onto the subspace L =Span{u}

Notation: y = proj, = (%) u

Example: Lety = [ (73 } andu = [ ] Write y =y + z where y is in

Span{u} and z is orthogonal to u.
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Example Continued...
Determine the distance between the point (7,6) and the line Span{u}.
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