March 29 Math 3260 sec. 56 Spring 2018

Section 6.1: Inner Product, Length, and Orthogonality

We defined the inner product on \mathbb{R}^n :

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n we define the **inner product** of \mathbf{u} and \mathbf{v} (also called the **dot product**) by the **matrix product**

$$\mathbf{u}^T\mathbf{v} = \begin{bmatrix} u_1 \ u_2 \cdots u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1v_1 + u_2v_2 + \cdots + u_nv_n.$$

We'll use the notation $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$.

Properties of the Inner Product & Norm

Theorem: For \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^n and real scalar c

- (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- (c) $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$
- (d) $\mathbf{u} \cdot \mathbf{u} \ge 0$, with $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Definition: The **norm** of the vector \mathbf{v} in \mathbb{R}^n is the nonnegative number denoted and defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

where v_1, v_2, \dots, v_n are the components of **v**.

Unit Vectors and Normalizing

Theorem: For vector \mathbf{v} in \mathbb{R}^n and scalar c

$$\|c\mathbf{v}\| = |c|\|\mathbf{v}\|.$$

Definition: A vector \mathbf{u} in \mathbb{R}^n for which $\|\mathbf{u}\| = 1$ is called a **unit vector**.

Remark: Given any nonzero vector \mathbf{v} in \mathbb{R}^n , we can obtain a unit vector \mathbf{u} in the same direction as \mathbf{v}

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}.$$

This process, of dividing out the norm, is called **normalizing** the vector **v**.

Distance in \mathbb{R}^n & Orthogonality

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the **distance between u and v** is denoted and defined by

$$\mathsf{dist}(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

Definition: Two vectors are **u** and **v** orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

Perpendicular: If nonzero vectors \mathbf{u} and \mathbf{v} are perpendicular in \mathbb{R}^n , then $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} + \mathbf{v}\|$. This is the case if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

The Pythagorean Theorem: Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if and only if

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$$

March 28, 2018 4 / 37

Orthogonal Complement

Definition: Let W be a subspace of \mathbb{R}^n . A vector \mathbf{z} in \mathbb{R}^n is said to be **orthogonal to** W if \mathbf{z} is orthogonal to every vector in W.

Definition: Given a subspace W of \mathbb{R}^n , the set of all vectors orthogonal to W is called the **orthogonal complement** of W and is denoted by

Theorem:

melliplication.

we have to show that O is in WL, WL is closed W^{\perp} is a subspace of \mathbb{R}^n . under vector addition, and W1 is closed under scaler

Since 0. W = 0 for all win W, 0 is in W. Let it and i be in WI. Then for any in W Tim=0 and V.W=0. Wate that

(は+な)・ガ・ガ・ガ・ガ・カ = 0 + 0 = 0 So tity is in WI. WI is closed under vector

addition.

For any scalar C

$$(c\vec{u}) \cdot \vec{w} = ((\vec{u} \cdot \vec{w}) = c(0) = 0$$

Hence che is in W. W. W. is closed under scalar multiplication.

So WI is a subspace.

Example

Let
$$W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
. Show that $W^{\perp} = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$.

Give a geometric interpretation of W and W^{\perp} as subspaces of \mathbb{R}^3 .

If
$$\vec{w}$$
 is in \vec{W} , then
$$\vec{u} = \vec{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \vec{b} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ for some scalars } \vec{a}_1\vec{b}_1.$$
Let \vec{u} be in \vec{W} . Then $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ and $\vec{u} \cdot \vec{w} = 0$
for every \vec{w} in \vec{W} .
$$\vec{u} \cdot \vec{w} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \cdot \begin{bmatrix} \vec{a} \\ 0 \\ \vec{b} \end{bmatrix} = u_1\vec{a} + u_2\cdot 0 + u_3\vec{b} = u_1\vec{a} + u_3\vec{b}$$

$$\vec{u} \cdot \vec{w} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \cdot \begin{bmatrix} \vec{a} \\ 0 \\ \vec{b} \end{bmatrix} = u_1\vec{a} + u_2\cdot 0 + u_3\vec{b} = u_1\vec{a} + u_3\vec{b}$$

March 28, 2018 8 / 37

so u, a + u, b =0 for all a,b. This must hold if a=1 and b=0. $u_1 \cdot 1 + u_3(0) = 0 \Rightarrow u_1 = 0$ This also must hold if bel giving N3(1) = 0 => N3=0. So I in WI has the form $\vec{u} = \begin{bmatrix} 0 \\ u_2 \\ 0 \end{bmatrix} = u_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ we can say \vec{u} is in Span $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.

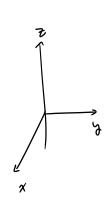
Thus
$$W^{\perp} = Spm \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$
.

 $W = Spon \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, so these are points like $(x, 0, 2)$.

The $xz - plane$.

 $W^{\perp} = Spcn \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, these are points $(0, 9, 0)$. this is

the $y - axis$.



Example

Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ -2 & 0 & 4 \end{bmatrix}$$
. Show that if \mathbf{x} is in Nul(A), then \mathbf{x} is in $[\text{Row}(A)]^{\perp}$.

A cref $\rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & \frac{1}{3} \end{bmatrix}$

For \mathbf{x} in NulA (ie. $A\mathbf{x} = 0$)

 $\mathbf{x}_1 = 2\mathbf{x}_3$
 $\mathbf{x}_3 = 4\mathbf{x}_3$

So $\mathbf{x}_4 = \mathbf{x}_3 = \mathbf{x}_3$
 $\mathbf{x}_4 = \mathbf{x}_4 = \mathbf{x}_4$

For $\mathbf{x}_4 = \mathbf{x}_4 = \mathbf{x}_4$
 $\mathbf{x}_5 = \mathbf{x}_5 = \mathbf{x}_5$
 $\mathbf{x}_6 = \mathbf{x}_6 = \mathbf{x}_6$

For $\mathbf{x}_7 = \mathbf{x}_7 = \mathbf{x}$

March 28, 2018 11 / 37

So for
$$\tilde{\chi}$$
 in Null and $\tilde{\chi}$ in Row (A)
$$\tilde{\chi} \cdot \tilde{\chi} = \chi_3 \begin{bmatrix} 2 \\ -\frac{1}{3} \\ 1 \end{bmatrix} \cdot \begin{pmatrix} \alpha \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + b \begin{pmatrix} 0 \\ -\frac{1}{3} \\ 1 \end{bmatrix} \cdot \begin{pmatrix} 0 \\ -\frac{1}{3} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0$$

Theorem

Theorem: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A. That is

$$[Row(A)]^{\perp} = Nul(A).$$

The orthongal complement of the column space of A is the null space of A^T —i.e.

$$[Col(A)]^{\perp} = Nul(A^{T}).$$

14/37

Example: Find the orthogonal complement of Col(A)

$$A = \begin{bmatrix} 5 & 2 & 1 \\ -3 & 3 & 0 \\ 2 & 4 & 1 \\ 2 & -2 & 9 \\ 0 & 1 & -1 \end{bmatrix} \qquad \text{(Sell ose that)} \qquad \text{(Col(A))} = \text{Nul(AT)}$$

$$A^{T} \text{ aref} \qquad \text{(I o 0 - 54 7)} \qquad \text{(I o 0 - 54 7)} \qquad \text{(I o 0 - 54 7)} \qquad \text{(I o 0 - 63 - 8)}$$

$$For \ \vec{X} \text{ in NulAT} \qquad \qquad X_{1} = \text{S4 x4 - 7 x5} \qquad \qquad X_{2} = \frac{146}{3} \text{ X4 - } -\frac{19}{3} \text{ X5} \qquad \qquad X_{3} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{4} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad X_{5} = -63 \text{ X4 + 8 x5} \qquad \qquad X_{5} = -63 \text$$

March 28, 2018 15 /

$$\vec{\chi} = X_4$$

$$\begin{pmatrix} 54 \\ \frac{146}{3} \\ -63 \\ 1 \\ 0 \end{pmatrix} + X_5$$

$$\begin{pmatrix} -7 \\ -\frac{19}{3} \\ 8 \\ 0 \\ 1 \end{pmatrix}$$

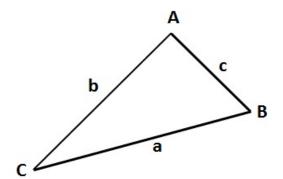
$$(\begin{bmatrix} 54 \\ -\frac{1}{3} \\ -\frac{1}{3}$$

$$\left[\text{Col A}\right] = \text{Spm} \left\{ \begin{bmatrix} \frac{54}{3} \\ \frac{146}{3} \\ \frac{1}{0} \end{bmatrix} \right\} \begin{bmatrix} -\frac{7}{19} \\ \frac{-19}{3} \\ \frac{9}{0} \\ 0 \end{bmatrix}$$

Recall the Law of Cosines

For triangle with angles A, B, C and opposite sides of lengths a, b, and c, respectively,

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$



Geometry of the Dot Product

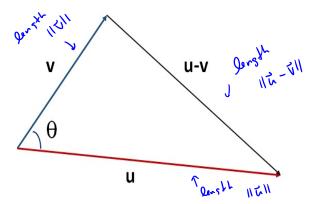


Figure: We can use the law of cosines to show that in \mathbb{R}^2 that $\mathbf{u} \cdot \mathbf{v}$ is related to the angle between the two (nonzero) vectors. This holds in \mathbb{R}^n . We're just restricting n to 2 for ease of computation.

By the law of cosines
|| ループリュー || 1112 + 117112 - Q11111 11111 Cos Q

From before, we know that $\|\vec{x} - \vec{v}\|^2 = \|\vec{x}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$

If i, i an nonzero then

Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a subspace W of \mathbb{R}^n , then each vector \mathbf{x} in W can be realized (uniquely) as a sum

$$\mathbf{x}=c_1\mathbf{b}_2+\cdots+c_p\mathbf{b}_p.$$

If n is very large, the computations needed to determine the coefficients c_1, \ldots, c_p may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

Orthogonal Sets

Definition: An indexed set $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** provided each pair of distinct vectors in the set is orthogonal. That is, provided

$$\mathbf{u}_i \cdot \mathbf{u}_j = 0$$
 whenever $i \neq j$.

Example: Show that the set
$$\left\{ \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\-4\\7 \end{bmatrix} \right\}$$
 is an orthogonal set.

$$\frac{7}{4} \cdot \frac{7}{4} = 3(-1) + 1(2) + 1(1) = -3 + 3 = 0$$

$$\left\{ \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\-4\\7 \end{bmatrix} \right\}$$

$$\vec{u}_1 \cdot \vec{u}_3 = 3(-1) + 1(-4) + 1(7) = -3 - 4 + 7 = 0$$

Orthongal Basis

Definition: An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis that is also an orthogonal set.

Theorem: Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Then each vector \mathbf{y} in W can be written as the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$$
, where the weights $c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$. $= rac{\sqrt[r]{j} \cdot \sqrt[r]{j}}{\|\mathbf{u}_j^*\|^2}$

$$\| \vec{u}_1 \|^2 = 3^2 + 1^2 + 1^2 = 11$$

$$\| \vec{u}_2 \|^2 = (-1)^2 + 2^2 + 1^2 = 66$$

$$\| \vec{u}_3 \|^2 = (-1)^2 + (-4)^2 + 7^2 = 66$$

$$\vec{y} = \frac{3}{11} \vec{\lambda}_1 + \frac{4}{3} \vec{\lambda}_2 - \frac{5}{33} \vec{\lambda}_3$$