March 2 MATH 1112 sec. 52 Spring 2020

Inverse Trigonometric Functions

Question: If someone asks "what is the sine of $\frac{\pi}{6}$?" we can respond with the answer (from memory or perhaps using a calculator) " $\frac{1}{2}$ ". What if the question is reversed? What if someone asks
"What angle has a sine value of $\frac{1}{2}$?"

$$
\begin{aligned}
& \frac{\pi}{6} \text { is one answer. } \\
& \frac{5 \pi}{6} \text { is anothe answer? }
\end{aligned}
$$

Restricting the Domain of $\sin (x)$

Figure: To define an inverse sine function, we start by restricting the domain of $\sin (x)$ to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval $[-1,1]$ the inverse sine of x is denoted by either

$$
\sin ^{-1}(x) \text { or } \arcsin (x)
$$

and is defined by the relationship

$$
y=\sin ^{-1}(x) \quad \Longleftrightarrow \quad x=\sin (y) \text { where }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} .
$$

The Domain of the Inverse Sine is $-1 \leq x \leq 1$.
The Range of the Inverse Sine is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Notation Warning!

Caution: We must remember not to confuse the superscript -1 notation with reciprocal. That is

$$
\sin ^{-1}(x) \neq \frac{1}{\sin (x)}
$$

If we want to indicate a reciprocal, we should use parentheses or trigonometric identities

$$
\frac{1}{\sin (x)}=(\sin (x))^{-1} \quad \text { or write } \quad \frac{1}{\sin (x)}=\csc (x)
$$

Some Inverse Sine Values

We can build a table of some inverse sine values by using our knowledge of the sine function.

x	$\sin ^{-1}(x)$
-1	$-\frac{\pi}{2}$
$-\frac{1}{\sqrt{2}}$	$-\frac{\pi}{4}$
$-\frac{1}{2}$	$-\frac{\pi}{6}$
0	0
$\frac{1}{\sqrt{2}}$	$\frac{\pi}{4}$
$\frac{\sqrt{3}}{2}$	$\frac{\pi}{3}$
1	$\frac{\pi}{2}$

Conceptual Definition ${ }^{1}$

We can think of the inverse sine function in the following way:

$\sin ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

[^0]Example
Evaluate each expression exactly.

$$
\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

(a) $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$ and $-\frac{\pi}{2} \leq \frac{\pi}{4} \leq \frac{\pi}{2}$
(b) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{-\pi}{3}$

$$
\sin \left(\frac{-\pi}{3}\right)=\frac{-\sqrt{3}}{2}
$$

$$
-\frac{\pi}{2} \leq \frac{-\pi}{3} \leq \frac{\pi}{2}
$$

Question

The value of $\sin ^{-1} 1$ is

(a) $\frac{\pi}{2}$

(b) $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$
(c) 0
(d) 0 and π

The Graph of the Arcsine

Figure: Note that the domain is $-1 \leq x \leq 1$ and the range is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Function/Inverse Function Relationship

For every x in the interval $[-1,1]$

$$
\sin \left(\sin ^{-1}(x)\right)=x
$$

For every x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin ^{-1}(\sin (x))=x
$$

Remark 1: If $x>1$ or $x<-1$, the expression $\sin ^{-1}(x)$ is not defined.
Remark 2: If $x>\frac{\pi}{2}$ or $x<-\frac{\pi}{2}$, the expression $\sin ^{-1}(\sin (x))$ IS defined, but IS NOT equal to x.

Example
Evaluate each expression if possible. If it is not defined, give a reason.
(a) $\sin \left[\sin ^{-1}\left(\frac{1}{2}\right)\right]=\frac{1}{2}$
$\frac{1}{2}$ is in $[-1,1]$ and for ever) x in $[-1,1]$

$$
\sin \left(\sin ^{-1} x\right)=x
$$

(b) $\sin ^{-1}(3)$

What angle between $\frac{-\pi}{2}$ and undefined $\frac{\pi}{2}$ has sine value of $-1 \leq \sin \theta \leq 1$ $3 ?$
(c) $\sin ^{-1}\left[\sin \left(\frac{\pi}{8}\right)\right]=\frac{\pi}{8} \quad \operatorname{since} \quad \frac{\pi}{8} \quad$ is in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
(d)

$$
\begin{aligned}
& \sin ^{-1}\left[\sin \left(\frac{4 \pi}{3}\right)\right] \\
= & \sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{-\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
\sin \left(\frac{4 \pi}{3}\right) & =-\sin \frac{\pi}{3} \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Question

The value of $\sin ^{-1}\left[\sin \frac{5 \pi}{6}\right]$ is

$$
\frac{5 \pi}{6} \text { is in Quod II }
$$

(a) $\frac{5 \pi}{6}$
(b) $\frac{\pi}{6}$
(c) $-\frac{\pi}{6}$
(d) $\frac{1}{2}$
(e) $-\frac{1}{2}$

$$
\sin \left(\frac{5 \pi}{6}\right)=+\sin \left(\frac{\pi}{6}\right)
$$

$$
=\sin \left(\frac{\pi}{6}\right)
$$

[^0]: ${ }^{1}$ We want to consider $f(x)=\sin ^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a very useful conceptual device for working with and evaluating this function.

