March 2 MATH 1112 sec. 52 Spring 2020

Inverse Trigonometric Functions

Question: If someone asks "what is the sine of $\frac{\pi}{6}$?" we can respond with the answer (from memory or perhaps using a calculator) " $\frac{1}{2}$ ". What if the question is reversed? What if someone asks

"What angle has a sine value of $\frac{1}{2}$?"

February 27, 2020 1/45

Restricting the Domain of sin(x)

Figure: To define an inverse sine function, we start by restricting the domain of sin(x) to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval [-1, 1] the inverse sine of x is denoted by either

$$\sin^{-1}(x)$$
 or $\arcsin(x)$

and is defined by the relationship

$$y = \sin^{-1}(x) \iff x = \sin(y)$$
 where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

The Domain of the Inverse Sine is $-1 \le x \le 1$.

The Range of the Inverse Sine is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

February 27, 2020 3/45

イロト 不得 トイヨト イヨト 二日

Notation Warning!

Caution: We must remember not to confuse the superscript -1 notation with reciprocal. That is

$$\sin^{-1}(x) \neq \frac{1}{\sin(x)}.$$

If we want to indicate a reciprocal, we should use parentheses or trigonometric identities

$$\frac{1}{\sin(x)} = (\sin(x))^{-1} \quad \text{or write} \quad \frac{1}{\sin(x)} = \csc(x).$$

Some Inverse Sine Values

We can build a table of some inverse sine values by using our knowledge of the sine function.

Conceptual Definition¹

We can think of the inverse sine function in the following way:

 $\sin^{-1}(x)$ is the *angle* between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

¹We want to consider $f(x) = \sin^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a **very useful** conceptual device for working with and evaluating this function $x \in \mathbb{R}$ and $x \in \mathbb{R}$.

Example

Evaluate each expression exactly.

(a)
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{9}$$

(b)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{1}{3}$$

Question

(c) 0

(d) 0 and π

Figure: Note that the domain is $-1 \le x \le 1$ and the range is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\sin\left(\sin^{-1}(x)\right) = x$$

For every *x* in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\sin^{-1}\left(\sin(x)\right)=x$

Remark 1: If x > 1 or x < -1, the expression $\sin^{-1}(x)$ is not defined.

February 27, 2020

10/45

Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\sin^{-1}(\sin(x))$ IS defined, but IS NOT equal to *x*.

Example

Evaluate each expression if possible. If it is not defined, give a reason.

(a)
$$\sin\left[\sin^{-1}\left(\frac{1}{2}\right)\right] = \frac{1}{2}$$

for every x in Eiji
 $\sin\left(\sin^{-1}x\right) = x$

(b) sin⁻¹(3) What angle between
$$-\frac{17}{2}$$
 and
undefined $\frac{17}{2}$ has sine value of
 $-1 \le \sin 0 \le 1$ 3?

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

(c)
$$\sin^{-1}\left[\sin\left(\frac{\pi}{8}\right)\right] = \frac{\pi}{8}$$
 Since $\frac{\pi}{8}$ is in $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$.

-

(d)
$$\sin^{-1}\left[\sin\left(\frac{4\pi}{3}\right)\right]$$

= $\int_{10}^{10}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{10}}{3}$

$$\theta'$$
 $\theta' = \frac{1}{3}$
 $\theta' = \frac{1}{3}$
 $S_{in} = -\frac{1}{2}$

・ロト・西ト・モン・モー シック

February 27, 2020 12/45

Question

The value of sin⁻¹
$$\left[\sin \frac{5\pi}{6}\right]$$
 is
(a) $\frac{5\pi}{6}$
(b) $\frac{\pi}{6}$
(c) $-\frac{\pi}{6}$
(d) $\frac{1}{2}$
(e) $-\frac{1}{2}$

$$\frac{5\pi}{6} \text{ is in Quad II}$$

$$\frac{5\pi}{6} = + \sin\left(\frac{\pi}{6}\right)$$

$$= \sin\left(\frac{\pi}{6}\right)$$

$$\frac{5\pi}{6}$$

$$\frac{5\pi}{6}$$

<ロ> <四> <四> <三</td>

February 27, 2020

13/45