March 2 Math 1190 sec. 62 Spring 2017

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

Implicit differentiation provided the tools necessary to:

- find $\frac{dy}{dx}$ from a relation between x and y,
- extend the power rule to non-integer powers,
- relate derivatives of inverse functions, and
- obtain derivative rules for inverse trigonometric functions.

March 1, 2017

1/67

The Power Rule: Rational Exponents

Theorem: If *r* is any rational number, then when x^r is defined, the function $y = x^r$ is differentiable and

$$\frac{d}{dx}x^r = rx^{r-1}$$

for all *x* such that x^{r-1} is defined.

For example, I claimed that $\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$.

$$\frac{d}{dx} = \frac{d}{dx} = \frac{d}{dx} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

...

March 1, 2017 2 / 67

イロト 不得 トイヨト イヨト 二日

Example let's over the quatient rule

Evaluate

$$\frac{d}{dx}\frac{1+\sqrt{x}}{x^2} = \frac{d}{dx}\left(\frac{1}{x^2} + \frac{\sqrt{x}}{x^2}\right)$$
$$= \frac{d}{dx}\left(\frac{z^2}{x^2} + \frac{x^{1/2}}{x^2}\right)$$
$$= \frac{d}{dx}\left(\frac{z^2}{x^2} + \frac{z^{3/2}}{x^2}\right) = -2x^3 - \frac{3}{2}x^{-5/2}$$

$$= \frac{-2}{\chi^{3}} - \frac{3}{2\chi^{5/2}}$$
$$= \frac{-2}{\chi^{3}} \cdot \frac{2}{2} - \frac{3}{2\chi^{5/2}} \cdot \frac{\chi^{1/2}}{\chi^{1/2}} = \frac{-4 - 3\sqrt{\chi}}{2\chi^{3}}$$

March 1, 2017 3 / 67

(日)

Question Find f'(x) where $f(x) = \frac{1}{\sqrt{x}}$.

(a)
$$f'(x) = \frac{1}{2}x^{3/2}$$

(b) $f'(x) = -2\sqrt{x}$

$$f(x) = \frac{-1/2}{x}$$

$$f'(x) = \frac{-1}{2} + \frac{2$$

(c)
$$f'(x) = -\frac{2}{x^2}$$

(d)
$$f'(x) = -\frac{1}{2x^{3/2}}$$

► ▲ ■ ► ■ のへの March 1, 2017 4/67

イロト イヨト イヨト イヨト

Inverse Functions

Suppose y = f(x) and x = g(y) are inverse functions—i.e. $(g \circ f)(x) = g(f(x)) = x$ for all x in the domain of f.

Theorem: Let *f* be differentiable on an open interval containing the number x_0 . If $f'(x_0) \neq 0$, then *g* is differentiable at $y_0 = f(x_0)$. Moreover

$$\frac{d}{dy}g(y_0)=g'(y_0)=\frac{1}{f'(x_0)}.$$

Note that this refers to a pair (x_0, y_0) on the graph of f—i.e. (y_0, x_0) on the graph of g. The slope of the curve of f at this point is the reciprocal of the slope of the curve of g at the associated point.

Example: $g'(y_0) = \frac{1}{f'(x_0)}$

We know that $f(x) = e^x$ and $g(x) = \ln x$ are inverse functions. Use this to find g'(e).

$$g'(e) = \frac{1}{f'(x_0)}$$
 but we need to know X_0 .

here
$$e = y_0 = f(x_0)$$
, x_0 solver $f(x_0) = e$
 $e^* = e \implies x_0 = 1$

$$f'(x) = e^{x}$$
 so $f'(1) = e^{-x}$

$$g'(e) = \frac{1}{e}$$

イロト 不得 トイヨト イヨト 二日

Question

 $f'(y_0) = \frac{1}{f'(x_0)}$

Suppose f and g are inverse functions such that

f(2) = 3, and f'(2) = 7. (x, y)= (2,3) Then. So yo= 3 and f'(xo) = f'(z)=7 (a) $g'(7) = \frac{1}{2}$ \Rightarrow $q'(3) = \frac{1}{2}$ (b) $g'(3) = \frac{1}{2}$ $g'(3) = rac{1}{7}$ $g'(f(x)) = \frac{1}{f'(x)}$ (d) $g'(2) = \frac{1}{2}$

Derivative of the Inverse Sine, Tangent, and Secant

We derived (or stated) the three new derivative rules

$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}} |x| < 1$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$

$$rac{d}{dx} \, \sec^{-1} x = rac{1}{x\sqrt{x^2-1}} \quad |x| > 1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Remaining Inverse Functions

$$fecall \quad Cos \theta = Sin(\frac{\pi}{2} - \theta)$$

Due to the trigonometric cofunction identities, it can be shown that

$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$$

$$\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$$

and

$$\csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x$$

March 1, 2017

9/67

Derivatives of Inverse Trig Functions

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \qquad \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}, \qquad \frac{d}{dx} \cot^{-1} x = -\frac{1}{1+x^2}$$

$$\frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^2 - 1}}, \qquad \frac{d}{dx} \csc^{-1} x = -\frac{1}{x\sqrt{x^2 - 1}}$$

March 1, 2017 10 / 67

<ロト <回 > < 回 > < 回 > < 回 > … 回

Example

Evaluate $\frac{d}{dx} \cot^{-1}\left(\frac{1}{x}\right)$

inside
$$u = g(x) = \frac{1}{x} = \frac{1}{x^2}$$

 $g'(x) = -1x^2 = \frac{1}{x^2}$
Outside $f(u) = Cot^2 u$
 $f'(u) = \frac{-1}{1+u^2}$

$$\frac{d}{dx} C_{0t} \left(\frac{1}{x} \right) = \frac{-1}{1 + \left(\frac{1}{x} \right)^2} \cdot \frac{-1}{x^2}$$

$$= \frac{1}{(1+\frac{1}{X^2})X^2} = \frac{1}{X^2+1} = \frac{1}{1+X^2}$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

March 1, 2017 11 / 67

<ロ> <四> <四> <三</td>

Question

Evaluate
$$\frac{d}{dx} \csc^{-1}(x^2)$$

 $\therefore u^{\text{sible}} \quad u^{\text{sible}} \quad x^2, \quad u' = \frac{du}{dx} = 2x$
 $a^{\text{tride}} \quad f(u) = Csi'u$
 $f'(u)^2 \quad \frac{-1}{u\sqrt{u^2 - 1}}$
 $\frac{d}{dx} Csi'(x^2) = \frac{-1}{\chi^2 \sqrt{(x^2)^2 - 1}} \quad (2x)$

(a)
$$-\frac{2x}{x^2\sqrt{x^4-1}}$$

(b)
$$-\frac{1}{2x\sqrt{4x^2-1}}$$

(c)
$$-\frac{2x}{x\sqrt{x^2-1}}$$

(d)
$$-\frac{1}{x^2\sqrt{x^4-1}}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで March 1, 2017 12 / 67 Section 3.3: Derivatives of Logarithmic Functions

Recall: If a > 0 and $a \neq 1$, we denote the **base** *a* **logarithm** of *x* by

log_a x

This is the inverse function of the (one to one) function $y = a^x$. So we can define $\log_a x$ by the statement

$$y = \log_a x$$
 if and only if $x = a^y$.

March 1, 2017

13/67

Our present goal is to use our knowledge of the derivative of an exponential function, along with the chain rule, to come up with a derivative rule for logarithmic functions.

Properties of Logarithms

We recall several useful properties of logarithms.

Let a, b, x, y be positive real numbers with $a \neq 1$ and $b \neq 1$, and let r be any real number.

$$\blacktriangleright \log_a(xy) = \log_a(x) + \log_a(y)$$

►
$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

$$log_a(x^r) = r \log_a(x)$$

▶ $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$ (the change of base formula)

> March 1, 2017

14/67

▶ $\log_{a}(1) = 0$

(1) In the expression ln(x), what is the base?

(a) 10

(b) 1

ln(x) = loge (x)

<ロト <回 > < 回 > < 回 > < 回 > … 回

March 1, 2017

15/67

Question

(2) Which of the following expressions is equivalent to

$$\log_{2} \left(x^{3} \sqrt{y^{2} - 1} \right)$$
(a) $\log_{2}(x^{3}) - \frac{1}{2} \log_{2}(y^{2} - 1)$
(b) $\frac{3}{2} \log_{2}(x(y^{2} - 1))$
(c) $3 \log_{2}(x) + \frac{1}{2} \log_{2}(y^{2} - 1)$
(d) $3 \log_{2}(x) + \frac{1}{2} \log_{2}(y^{2}) - \frac{1}{2} \log_{2}(1)$

イロト イポト イヨト イヨト

э

16/67

March 1, 2017

Properties of Logarithms

Additional properties that are useful.

▶ $f(x) = \log_a(x)$, has domain $(0, \infty)$ and range $(-\infty, \infty)$.

For a > 1, * $\lim_{x \to 0^+} \log_a(x) = -\infty \quad \text{and} \quad \lim_{x \to -\infty} \log_a(x) = \infty$ For 0 < a < 1, $\lim_{x \to 0^+} \log_a(x) = \infty \quad \text{and} \quad \lim_{x \to -\infty} \log_a(x) = -\infty$

In advanced mathematics (and in light of the change of base formula), we usually restrict our attention to the natural log, $a_{2}, a_{3}, a_$

March 1, 2017 17 / 67

Graphs of Logarithms:Logarithms are continuous on $(0,\infty)$.

Figure: Plots of functions of the type $f(x) = \log_a(x)$. The value of a > 1 on the left, and 0 < a < 1 on the right.

March 1, 2017

18/67

Examples

Evaluate each limit.

(a) $\lim_{x\to 0^+} \ln(\sin(x)) = -\infty$

(b) $\lim_{x \to \frac{\pi}{2}^{-}} \ln(\tan(x)) = \mathbf{i}$

Question:

(d) The limit doesn't exist.

guer to 3200 thronst position numbers i.e. -> Ot

Logarithms are Differentiable on Their Domain

Figure: Recall $f(x) = a^x$ is differentiable on $(-\infty, \infty)$. The graph of $\log_a(x)$ is a reflection of the graph of a^x in the line y = x. So $f(x) = \log_a(x)$ is differentiable on $(0, \infty)$.