March 2 Math 1190 sec. 63 Spring 2017

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

Implicit differentiation provided the tools necessary to:

- find $\frac{d y}{d x}$ from a relation between x and y,
- extend the power rule to non-integer powers,
- relate derivatives of inverse functions, and
- obtain derivative rules for inverse trigonometric functions.

The Power Rule: Rational Exponents

Theorem: If r is any rational number, then when x^{r} is defined, the function $y=x^{r}$ is differentiable and

$$
\frac{d}{d x} x^{r}=r x^{r-1}
$$

for all x such that x^{r-1} is defined.
For example, I claimed that $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.

$$
\frac{d}{d x} \sqrt{x}=\frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2} \frac{1}{\sqrt{x}}=\frac{1}{2 \sqrt{x}}
$$

Example
Let's avoid the quotient rue

Evaluate

$$
\begin{aligned}
& \frac{d}{d x} \frac{1+\sqrt{x}}{x^{2}}=\frac{d}{d x}\left(\frac{1}{x^{2}}+\frac{\sqrt{x}}{x^{2}}\right) \\
&=\frac{d}{d x}\left(x^{-2}+\frac{x^{1 / 2}}{x^{2}}\right)=\frac{d}{d x}\left(x^{-2}+x^{-3 / 2}\right) \\
&=-2 x^{-3}-\frac{3}{2} x^{-5 / 2} \\
&=\frac{-2}{x^{3}}-\frac{3}{2 x^{5 / 2}}=\frac{-2}{x^{3}} \cdot \frac{2}{2}-\frac{3}{2 x^{5 / 2}} \cdot \frac{x^{\frac{1}{2}}}{x^{1 / 2}} \\
&=\frac{-4}{2 x^{3}}-\frac{3 x^{1 / 2}}{2 x^{3}}=\frac{-4-3 \sqrt{x}}{2 x^{3}}
\end{aligned}
$$

Question
Find $f^{\prime}(x)$ where $f(x)=\frac{1}{\sqrt{x}}$.
(a) $f^{\prime}(x)=\frac{1}{2} x^{3 / 2}$

$$
f(x)=x^{-1 / 2}
$$

(b) $f^{\prime}(x)=-2 \sqrt{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-1}{2} x^{-1 / 2-1}=\frac{-1}{2} x^{-3 / 2} \\
& : \frac{-1}{2} \frac{1}{x^{3 / 2}}=\frac{-1}{2 x^{3 / 2}}
\end{aligned}
$$

(c) $f^{\prime}(x)=-\frac{2}{x^{2}}$
(d) $f^{\prime}(x)=-\frac{1}{2 x^{3 / 2}}$

Inverse Functions

Suppose $y=f(x)$ and $x=g(y)$ are inverse functions-i.e. $(g \circ f)(x)=g(f(x))=x$ for all x in the domain of f.

Theorem: Let f be differentiable on an open interval containing the number x_{0}. If $f^{\prime}\left(x_{0}\right) \neq 0$, then g is differentiable at $y_{0}=f\left(x_{0}\right)$. Moreover

$$
\frac{d}{d y} g\left(y_{0}\right)=g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)} .
$$

Note that this refers to a pair $\left(x_{0}, y_{0}\right)$ on the graph of f-i.e. $\left(y_{0}, x_{0}\right)$ on the graph of g. The slope of the curve of f at this point is the reciprocal of the slope of the curve of g at the associated point.

Example: $g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}$
We know that $f(x)=e^{x}$ and $g(x)=\ln x$ are inverse functions. Use this to find $g^{\prime}(e)$.
we wort $g^{\prime}(e)=\frac{1}{f^{\prime}\left(x_{0}\right)}$ but we don know x_{0}.
So $y_{0}=e . y_{0}=f\left(x_{0}\right) \Rightarrow e=f\left(x_{0}\right)=e^{x_{0}}$
we ned $e^{x_{0}}=e \Rightarrow x_{0}=1$

$$
f^{\prime}(x)=e^{x} \text { so } f^{\prime}(1)=e^{\prime}=e
$$

hence $g^{\prime}(e)=\frac{1}{f^{\prime}(1)}=\frac{1}{e}$

Question

$$
g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Suppose f and g are inverse functions such that

$$
f(2)=3, \quad \text { and } \quad f^{\prime}(2)=7
$$

Then,
(a) $g^{\prime}(7)=\frac{1}{3}$

$$
(2,3)=\left(x_{0}, y_{0}\right) \quad x_{0}=2, \quad y_{0}=3
$$

$$
g^{\prime}(3)=\frac{1}{f^{\prime}(2)}=\frac{1}{7}
$$

(b) $g^{\prime}(3)=\frac{1}{2}$
(c) $g^{\prime}(3)=\frac{1}{7}$
(d) $g^{\prime}(2)=\frac{1}{7}$

Derivative of the Inverse Sine, Tangent, and Secant

We derived (or stated) the three new derivative rules

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \quad|x|<1
$$

$$
\text { Recall } y=\sin ^{-1} x \Rightarrow x=\sin y
$$

$$
\text { and }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

$$
\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}|x|>1
$$

The Remaining Inverse Functions

$$
\text { Recall } \cos \theta=\sin \left(\frac{\pi}{2}-\theta\right)
$$

Due to the trigonometric cofunction identities, it can be shown that

$$
\begin{aligned}
& \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x \\
& \cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x
\end{aligned}
$$

and

$$
\csc ^{-1} x=\frac{\pi}{2}-\sec ^{-1} x
$$

Derivatives of Inverse Trig Functions

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, & \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}, & \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}, & \frac{d}{d x} \csc ^{-1} x=-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

Example
Evaluate $\frac{d}{d x} \cot ^{-1}\left(\frac{1}{x}\right)$

$$
\begin{aligned}
\frac{d}{d x} \cot ^{-1}\left(\frac{1}{x}\right) & =\frac{-1}{1+\left(\frac{1}{x}\right)^{2}} \cdot \frac{-1}{x^{2}} \\
& =\frac{1}{\left(1+\frac{1}{x^{2}}\right) x^{2}}=\frac{1}{x^{2}+1}
\end{aligned}
$$

Turns out $\cot ^{-1}\left(\frac{1}{x}\right)=\tan ^{-1} x$

Question
Evaluate $\frac{d}{d x} \csc ^{-1}\left(x^{2}\right)$
(a) $-\frac{2 x}{x^{2} \sqrt{x^{4}-1}}$

Inside $\quad u=g(x)=x^{2} \quad g^{\prime}(x)=2 x$ outride $f(u)=\csc ^{-1} u$
(b) $-\frac{1}{2 x \sqrt{4 x^{2}-1}}$

$$
f^{\prime}(u)=\frac{-1}{u \sqrt{u^{2}-1}}
$$

(c) $-\frac{2 x}{x \sqrt{x^{2}-1}}$

$$
\frac{d}{d x} \csc ^{-1}\left(x^{2}\right)=\frac{-1}{x^{2} \sqrt{\left(x^{2}\right)^{2}-1}} \cdot(2 x)
$$

(d) $-\frac{1}{x^{2} \sqrt{x^{4}-1}}$

Section 3.3: Derivatives of Logarithmic Functions

Recall: If $a>0$ and $a \neq 1$, we denote the base a logarithm of x by

$$
\log _{a} x
$$

This is the inverse function of the (one to one) function $y=a^{x}$. So we can define $\log _{a} x$ by the statement

$$
y=\log _{a} x \text { if and only if } x=a^{y} .
$$

Our present goal is to use our knowledge of the derivative of an exponential function, along with the chain rule, to come up with a derivative rule for logarithmic functions.

Properties of Logarithms

We recall several useful properties of logarithms.

Let a, b, x, y be positive real numbers with $a \neq 1$ and $b \neq 1$, and let r be any real number.

- $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$
- $\log _{a}\left(x^{r}\right)=r \log _{a}(x)$
$-\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$
(the change of base formula)
- $\log _{a}(1)=0$

Question

(1) In the expression $\ln (x)$, what is the base?
(a) 10
(b) 1
(C) e

Question

(2) Which of the following expressions is equivalent to

$$
\log _{2}\left(x^{3} \sqrt{y^{2}-1}\right)
$$

(a) $\log _{2}\left(x^{3}\right)-\frac{1}{2} \log _{2}\left(y^{2}-1\right)$

(c) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(d) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}\right)-\frac{1}{2} \log _{2}(1)$

Properties of Logarithms

Additional properties that are useful.

- $f(x)=\log _{a}(x)$, has domain $(0, \infty)$ and range $(-\infty, \infty)$.
- For $a>1$, *

$$
\lim _{x \rightarrow 0^{+}} \log _{a}(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a}(x)=\infty
$$

- For $0<a<1$,

$$
\lim _{x \rightarrow 0^{+}} \log _{a}(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a}(x)=-\infty
$$

In advanced mathematics (and in light of the change of base formula), we usually restrict our attention to the natural log.

Graphs of Logarithms:Logarithms are continuous on

 $(0, \infty)$.

Figure: Plots of functions of the type $f(x)=\log _{a}(x)$. The value of $a>1$ on the left, and $0<a<1$ on the right.

Examples
Evaluate each limit.
(a) $\lim _{x \rightarrow 0^{+}} \ln (\sin (x))=-\infty$

Recall $\lim _{t \rightarrow 0^{+}} \ln t=-\infty$
(b) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \ln (\tan (x))=\infty$

1	1	$\lim _{x \rightarrow \frac{\pi}{2}} \tan x=\infty$	
1	$y=\tan x$		$\lim _{t \rightarrow \infty} \ln t=\infty$
1	\ddots	$\frac{\pi}{2}$	
1			

Question:

$\lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \lim _{x \rightarrow \infty} \ln x=\infty$
Evaluate the limit $\quad \lim _{x \rightarrow \infty} \ln \left(\frac{1}{x^{2}}\right)$

(a) $-\infty$
(b) 0
(c) ∞
(d) The limit doesn't exist.

Logarithms are Differentiable on Their Domain

Figure: Recall $f(x)=a^{x}$ is differentiable on $(-\infty, \infty)$. The graph of $\log _{a}(x)$ is a reflection of the graph of a^{x} in the line $y=x$. So $f(x)=\log _{a}(x)$ is differentiable on $(0, \infty)$.

