March 2 Math 3260 sec. 55 Spring 2020

Section 4.1: Vector Spaces and Subspaces

Definition A vector space is a nonempty set V of objects called
vectors together with two operations called vector addition and scalar
multiplication that satisfy the following ten axioms: For all u, v, and w in
V, and for any scalars ¢ and d

The sumu+vofuandvisin V.

u+v=v+u.

(U+v)+w=u+(v+w).

There exists a zero vector 0 in V such thatu + 0 = u.

For each vector u there exists a vector —u such that u + (—u) = 0.
For each scalar ¢, cuisin V.

c(u+v)=cu+cv.

(c+ d)u=cu+du.

¢(du) = d(cu) = (cd)u.

0. 1lu=u
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Subspaces

Definition: A subspace of a vector space V is a subset H of V for
which

a) The zero vector is in H'

b) H is closed under vector addition. (i.e. u,vin H implies u + vis in
H)

c) His closed under scalar multiplication. (i.e. uin H implies cu is in
H)

"This is sometimes replaced with the condition that H is-nonempty.
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An Example of a Vector Space & Subspace

C'(R) denotes the set of all real valued functions with domain R that
are one-times continuously differentiable.

A function f is in C'(R) if
> f'(x) exists, and
» f'(x) is continuous on (—oc, ).

This is a vector space with vector addition and scalar multiplication
defined in the standard was for functions:

(f+9)(x)=f(x)+g(x), and (cf)(x)= cf(x).
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H={fe C'(R)]|f(0) =0}

Show? that H is a subspace of C'(R).
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®The zero vector in C'(R) is the function z(x) = 0 for all.x.
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Definition: Linear Combination and Span

Definition Let V be a vector space and v¢, va, ..., V, be a collection of
vectors in V. A linear combination of the vectors is a vector u

U=CiVy + CoVo + -+ CpVp

for some scalars ¢y, ¢, . . ., Cp.

Definition The span, Span{vy,Vz,...,Vp}, is the subet of V
consisting of all linear combinations of the vectors v¢, Vo, ..., Vp.
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Theorem

Theorem: If v{, vo, ..., vy, for p > 1, are vectors in a vector space V,
then Span{vy,Vs,...,V,}, is a subspace of V.

Remark This is called the subspace of V spanned by (or generated
by) {vi,...,Vvp}. Moreover, if H is any subspace of V, a spanning set
for H is any set of vectors {vy,...,Vp} such that H =Span{vy,...,vp}.
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Example

M?2%2 denotes the set of all 2 x 2 matrices with real entries. Consider
the subset H of M2*2

H:{[g 2] \a,beR}.

Show that H is a subspace of M?*2 by finding a spanning set. That is,
show that H =Span{vy, vo} for some appropriate vectors.
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Section 4.2: Null & Column Spaces, Linear
Transformations

Definition: Let A be an m x n matrix. The null space of A, denoted?®
by Nul A, is the set of all solutions of the homogeneous equation
Ax = 0. That is

NulA = {x € R" | Ax = 0}.

We can say that Nul A is the subset of R" that gets mapped to the zero
vector under the linear transformation x — Ax.

8Some authors will write Null(A) with two ells.
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Example

Determine Nul A where
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Theorem

For m x n matrix A, Nul A is a subspace of R".
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