March 2 Math 3260 sec. 55 Spring 2020

Section 4.1: Vector Spaces and Subspaces

Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms: For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $\mathbf{1 u}=\mathbf{u}$

Subspaces

Definition: A subspace of a vector space V is a subset H of V for which
a) The zero vector is in H^{1}
b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u}+\mathbf{v}$ is in H)
c) H is closed under scalar multiplication. (i.e. \mathbf{u} in H implies $c \mathbf{u}$ is in H)
${ }^{1}$ This is sometimes replaced with the condition that H is nonempty.

An Example of a Vector Space \& Subspace

$C^{1}(\mathbb{R})$ denotes the set of all real valued functions with domain \mathbb{R} that are one-times continuously differentiable.

A function f is in $C^{1}(\mathbb{R})$ if

- $f^{\prime}(x)$ exists, and
- $f^{\prime}(x)$ is continuous on $(-\infty, \infty)$.

This is a vector space with vector addition and scalar multiplication defined in the standard was for functions:

$$
(f+g)(x)=f(x)+g(x), \quad \text { and } \quad(c f)(x)=c f(x) .
$$

$$
H=\left\{f \in C^{1}(\mathbb{R}) \mid f(0)=0\right\}
$$

Show ${ }^{2}$ that H is a subspace of $C^{1}(\mathbb{R})$.
we need to show that it has the three properties of a subspace.
(1) Note that if $z(x)=0$ for all x, then $z(0)=0$. So the set contains the zero vector.
(2) Suppose f and g are in H. Then $f(0)=0$ and $g(0)=0$.

$$
(f+g)(0)=f(0)+g(0)=0+0=0
$$

Thus $f+g$ is in H, and A is closed
${ }^{2}$ The zero vector in $C^{1}(\mathbb{R})$ is the function $z(x)=0$ for all x.
under vector addition.
(3) Let f be in H, and c be a scalar.

Then $(c f)(0)=c f(0)=c \cdot 0=0$
So cf is in H, and H is closed under scalar multiplication.
H is a subspace of $C^{\prime}(\mathbb{R})$.

Definition: Linear Combination and Span

Definition Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ be a collection of vectors in V. A linear combination of the vectors is a vector \mathbf{u}

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{p}$.

Definition The span, $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is the subet of V consisting of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$.

Theorem

Theorem: If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$, for $p \geq 1$, are vectors in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is a subspace of V.

Remark This is called the subspace of V spanned by (or generated by) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Moreover, if H is any subspace of V, a spanning set for H is any set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ such that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Example
$M^{2 \times 2}$ denotes the set of all 2×2 matrices with real entries. Consider the subset H of $M^{2 \times 2}$

$$
H=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

Show that H is a subspace of $M^{2 \times 2}$ by finding a spanning set. That is, show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for some appropriate vectors.
well take on element of H^{t} and write it as a linear combination.

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] } & =\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right] \\
& =a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

This is a linear combo at the vectors

$$
\begin{aligned}
& \vec{V}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } \quad \vec{V}_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& H=\operatorname{Span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

Section 4.2: Null \& Column Spaces, Linear Transformations

Definition: Let A be an $m \times n$ matrix. The null space of A, denoted ${ }^{3}$ by $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} .
$$

We can say that $\mathrm{Nul} A$ is the subset of \mathbb{R}^{n} that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.
${ }^{3}$ Some authors will write $\operatorname{Null}(A)$ with two ells.

Example
Determine Nu A where

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
1 & 2 & 7
\end{array}\right]
$$

we need to characterize vectors \vec{x} in \mathbb{R}^{3} such that $A \vec{x}=\overrightarrow{0}$. We con use row reduction on $\left[\begin{array}{ll}A & 0\end{array}\right]$.

$$
\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
1 & 2 & 7 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0
\end{array}\right]
$$

A vector \vec{x} in Nue A is

$$
\begin{aligned}
& \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-3 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right] \\
& \text { Nue } A=S_{\text {pon }}\left\{\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right]\right\},
\end{aligned}
$$

Theorem

For $m \times n$ matrix A, Nul A is a subspace of \mathbb{R}^{n}.

