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Section 11.5: Alternating Series

Definition: Let {b,} be a sequence of nonnegative numbers. A series

of the form
> (=), or > (=1)"by
n=1 n=1

is called an alternating series.
Z (3 x by # Yy byt e

L

S b by = bt b b

n<

() March 24, 2015

1/38



Examples of Alternating Series

The series
S G B |
2 n T2tz g
n=1

is called the alternating harmonic series.

The series
() 1.2 3 4

n+2 3 4 5 6

n=1
is an alternating series.
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Theorem: The Alternating Series Test

Theorem: Let > (—1)"""b, be an alternating series. If
n=1

(i) bpt1 <b, foralln
and (ii) lim b, =0,

n—oo

Then the series is convergent.

0 March 24, 2015

3/38



Example
(a) Determine the convergence or divergence of the alternating

. . o0 (71)n—1
harmonic series ) ~—>—.

n=1 \
Oce  Alk, Sever st et
. <« L O S
(‘-) N\ - n

<%
S \91\1»\ =k

LL) 9"‘ \)“1 )‘“\ \_q = O

N2 e W= pe

The seces ¥ ComNeSgak.

() March 24, 2015

4/38



Example

Determine the convergence or divergence of the series
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Example
Determine the convergence or divergence of the series
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Example
Determine the convergence or divergence of the series
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An Observation

Note: If property (ii) doesn’t hold, i.e. if lim,_~, by # 0, then the series
will definitely diverge by the divergence test.

However, if the second condition DOES hold, but the first does not,

the test is inconclusive. The series may converge or it may diverge.
Some other test must be used.
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A Strange Case: (bn.1 < by is required)

Consider the series

0 ﬁ, n odd
> (=1)"b, where b, =
n=1 2 neven

n’

It is easy to see that lim,_,, b, = 0. But note that the terms b, are

1111 1 1
{bn}_{1,1’4,2’9’3716,4"”}

So that

which is divergent.
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Another Strange Case:

Consider the series

~ ﬁ, n odd
> (=1)"b, where b, =
n=1 8 neven

nd’
It is easy to see that lim,_,, b, = 0. But note that the terms b, are

111111111}

{bn} = {1’1’4’8’ 9°27°16'64°25°125° 36

So that
2= 22
n=1 n=1 n=1

which is convergent.
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Section 11.6: Absolute Convergence & the Ratio Test
Note that

s 1 1 1 1
Z(_1)n_17:1_7+§_2+”. converges,

n=1 n 2
but
s 1 1 1 1 1
11| R J T e i
Z( 1) - Zn 1+2+3+4+ diverges.
n=1 n=1
However, both
0 1 1 1 1
_1 n—17:1_7 -
;( i itg gt and
o0 1 1 1 1 1
Z(_1)n—1? :Z?:1+Z+§+ﬁ+--- converge.

n=1
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Absolute Convergence

Definition: A series > a, is called absolutely convergent if the
series of absolute values > |a,| is convergent.
For Example: The series

> (=1 — is absolutely convergent.

n=1

The alternating harmonic series is NOT absolutely convergent.
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Conditional Convergence

Definition: A series that is convergent but is not absolutely convergent
is called conditionally convergent.

The alternating harmonic series IS conditionally convergent.
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Theorem on Absolute Convergence

Theorem: If a series is absolutely convergent, it is convergent.

Remark: If we can show that a series is absolutely convergent, then
we can conclude that it is convergent.

Remark: Of course, this doesn’t mean that a series that isn’t
absolutely convergent must diverge. It may be conditionally
convergent, and some effort may be required to determine its nature.
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Example
Determine if the series is convergent or divergent.
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Theorem: The Ratio Test (a test for abs. convergence)
Theorem: Let ) a, be a series, and define the number L by

an+1
an

lim =L
n—oo

If
(i) L < 1, the series is absolutely convergent;

(i) L> 1, the series is divergent;
(i) L =1, the test is inconclusive.

Remark: In the case L = 1, the series may be absolutely convergent,
conditionally convergent, or divergent. This test truly fails, and some
other test or analysis is necessary to draw any conclusion.
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Examples
Determine if the series is absolutely convergent, conditionally

convergent, or divergent. ]
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