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Section 11.6: Absolute Convergence: the Ratio & Root Tests

Definition: A series
∑

an is called absolutely convergent if the
series of absolute values

∑
|an| is convergent.

Theorem: If
∑

an is absolutely convergent, it is convergent.

Definition: If
∑

an is convergent, and
∑
|an| is divergent, then

∑
an is

called conditionally convergent.
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Conditionally Convergent Series
Suppose

∑
an is conditionally convergent. If R is any real number,

then there is a rearrangement of the terms an that sums to R.

Example: It can be shown that as written
∞∑

n=1

(−1)n−1

n = ln(2). Consider

rearranging the terms with the pattern

One positive, next two negatives, next one positive, next two
negatives, etc.
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Theorem: The Ratio Test (a test for abs. convergence)
Theorem: Let

∑
an be a series, and define the number L by

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

If
(i) L < 1, the series is absolutely convergent;

(ii) L > 1, the series is divergent;

(iii) L = 1, the test is inconclusive.

Remark: In the case L = 1, the series may be absolutely convergent,
conditionally convergent, or divergent. This test truly fails, and some
other test or analysis is necessary to draw any conclusion.
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Examples
Determine if the series is absolutely convergent, conditionally
convergent, or divergent.

(b)
∞∑

n=1

nn

n!
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Examples
Determine if the series is absolutely convergent, conditionally
convergent, or divergent.

(c)
∞∑

n=0

(−1)n π2n

(2n)!
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