March 31 Math 2306 sec 59 Spring 2016

Section 11: Linear Mechanical Equations

We can consider the application of an external driving force (with or without damping). Assume a time dependent force $f(t)$ is applied to the system. The ODE governing displacement becomes

$$
m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x+f(t), \quad \beta \geq 0
$$

Divide out m and let $F(t)=f(t) / m$ to obtain the nonhomogeneous equation

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t)
$$

Forced Undamped Motion and Resonance

Consider the case $F(t)=F_{0} \cos (\gamma t)$ or $F(t)=F_{0} \sin (\gamma t)$, and $\lambda=0$. Two cases arise
(1) $\gamma \neq \omega, \quad$ and (2) $\quad \gamma=\omega$.

Taking the sine case, the DE is

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

with complementary solution

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

If $\gamma \neq \omega$, then $x_{p}=A \cos (\gamma t)+B \sin (\gamma t)$.
If $\gamma=\omega$, then $x_{p}=A t \cos (\omega t)+B t \sin (\omega t)$.

Forced Undamped Motion and Resonance

For $F(t)=F_{0} \sin (\gamma t)$ starting from rest at equilibrium:

Case (1): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{\omega^{2}-\gamma^{2}}\left(\sin (\gamma t)-\frac{\gamma}{\omega} \sin (\omega t)\right)
$$

If $\gamma \approx \omega$, the amplitude of motion could be rather large!

Pure Resonance

Case (2): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\omega t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{2 \omega^{2}} \sin (\omega t)-\frac{F_{0}}{2 \omega} t \cos (\omega t)
$$

Note that the amplitude, α, of the second term is a function of t :

$$
\alpha(t)=\frac{F_{0} t}{2 \omega}
$$

which grows without bound!

Choose "Elongation diagram" to see a plot of displacement. Try exciter frequencies close to ω.

Section 12: LRC Series Circuits

Potential Drops Across Components:

Figure: Kirchhoff's Law: The charge q on the capacitor satisfies $L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t)$.

LRC Series Circuit (Free Electrical Vibrations)

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=0
$$

If the applied force $E(t)=0$, then the electrical vibrations of the $\alpha_{2} s^{3 \times n^{4}}$ circuit are said to be free. These are categorized as

$$
\begin{aligned}
& \text { overdamped if } \\
& \text { critically damped if } \\
& \text { underdamped if } \\
& R^{2}-4 L / C>0, \\
& R^{2}-4 L / C=0, \leftarrow \text { one refor } \\
& R^{2}-4 L / C<0 .
\end{aligned}
$$

$$
\begin{aligned}
& R^{2}-4 L / C>0, \\
& R^{2}-4 L / C=0, \leftarrow \text { one refor } \\
& R^{2}-4 L / C<0 .
\end{aligned}
$$

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0}
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t)
$$

The function of q_{c} is influenced by the initial state (q_{0} and i_{0}) and will decay exponentially as $t \rightarrow \infty$. Hence q_{c} is called the transient state charge of the system.

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0} .
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t) .
$$

The function q_{p} is independent of the initial state but depends on the characteristics of the circuit (L, R, and C) and the applied voltage E. q_{p} is called the steady state charge of the system.

Example
An LRC series circuit has inductance 0.5 h , resistance 10 ohms, and capacitance $4 \cdot 10^{-3} \mathrm{f}$. Find the steady state current of the system if the applied force is $E(t)=5 \cos (10 t)$.

Note Current $=\frac{d}{d t}$ (Charge) so $i_{p}=\frac{d}{d t} q_{p}$

The ODE will look like

$$
\begin{gathered}
L q^{\prime \prime}+R q^{\prime}+\frac{1}{c} q=E \\
\frac{1}{2} q^{\prime \prime}+10 q^{\prime}+\frac{1}{4 \cdot 10^{-3}} q=5 \cdot \cos (10 t)
\end{gathered}
$$

$$
2 \cdot \frac{1}{4 \cdot 10^{-3}}=\frac{2 \cdot 10^{3}}{4}=\frac{10^{3}}{2}=\frac{1000}{2}=500
$$

Stander form:

$$
q^{\prime \prime}+20 q^{\prime}+500 q=10 \cos (10 t)
$$

Chare. eg

$$
r^{2}+20 r+500=0
$$

$$
\left(\frac{20}{2}\right)^{2}=100
$$

Complete the

$$
r^{2}+20 r+100-100+500=0
$$

square

$$
\begin{aligned}
(r+10)^{2}+400=0 \Rightarrow(r+10)^{2} & =-400 \\
r+10 & = \pm 20 i \\
r & =-10 \pm 20 i
\end{aligned}
$$

$$
q_{1}=e^{-10 t} \cos (20 t), q_{2}=e^{-10 t} \sin (20 t) \epsilon
$$

$$
q^{\prime \prime}+20 q^{\prime}+500 q=10 \cos (10 t)
$$

we ned $q_{p}: G \operatorname{Gess} q_{p}=A \cos (10 t)+B \sin (10 t)$

$$
\begin{aligned}
& q_{p}^{\prime}=-10 A \sin (10 t)+10 B \cos (10 t) \\
& q_{p}^{\prime \prime}=-100 A \cos (10 t)-100 B \sin (10 t) \\
& q_{p}^{\prime \prime}+20 q_{p}^{\prime}+500 q_{p}=10 \cos (10 t)+0 \cdot \sin (10 t) \\
&-100 A \cos (10 t)-100 B \sin (10 t)-200 A \sin (10 t)+200 B \cos (10 t) t \\
& 500 A \cos (10 t)+500 B \sin (10 t)=10 \cos (10 t)+0 \cdot \sin (10 t)
\end{aligned}
$$

Collect Cosines and Sines

$$
\begin{aligned}
& \operatorname{Cos}(10 t)[-100 A+200 B+500 A]+\sin (10 t)[-100 B-200 A+500 B] \\
&= 10 \cos (10 t)+\underline{0} \cdot \sin (10 t) \\
& 400 A+200 B=10 \quad 400 A+200 B=10 \\
&-200 A+400 B=0 \quad \begin{aligned}
-400 A+800 B & =0 \\
1000 B & =10 \\
B & =\frac{1}{100}
\end{aligned}
\end{aligned}
$$

$$
200 A=400 B \Rightarrow A=2 B=2 \cdot \frac{1}{100}=\frac{1}{50}
$$

So the steady state change is

$$
\begin{gathered}
q_{p}=\frac{1}{50} \cos (10 t)+\frac{1}{100} \sin (10 t) \\
i=\frac{d g}{d t}
\end{gathered}
$$

The stead, state current is

$$
i_{p}=\frac{-1}{5} \sin (10 t)+\frac{1}{10} \cos (10 t)
$$

Section 13: The Laplace Transform

If $f=f(s, t)$ is a function of two variables s and t, and we compute a definite integral with respect to t,

$$
\int_{a}^{b} f(s, t) d t
$$

we are left with a function of s alone.

Example: The integral ${ }^{1}$
$\begin{aligned} \int_{0}^{4}(2 s t-s) d t=2 s^{\prime} \frac{t^{2}}{2}-\left.s t\right|_{0} ^{4} & =2 s \frac{4^{2}}{2}-s \cdot 4-\left(2 s \cdot \frac{0^{2}}{2}-s \cdot 0\right) \\ & =16 s-4 s\end{aligned}$
is a function of the variable s.

$$
=12 \mathrm{~s}
$$

[^0]
Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t .
$$

- The function K is called the kernel of the transformation.
- The limits a and b may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t .
$$

[^0]: ${ }^{1}$ The variable s is treated like a constant when integrating with respect to t-and visa versa.

