March 31 Math 2335 sec 51 Spring 2016

Section 5.3: Gaussian Quadrature

Here we are going to approximate the integral $I(f)$ by the new rule called Gaussian Quadrature. The integration formula will be given by

$$
I_{n}(f)=\sum_{j=1}^{n} w_{j} f\left(x_{j}\right)
$$

where the numbers $\left\{w_{1}, \ldots, w_{n}\right\}$ are called the weights and $\left\{x_{1}, \ldots, x_{n}\right\}$ are called the nodes.

Main Idea: The weights and nodes are chosen so that $I_{n}(p)=I(p)$ exactly, for $p(x)$ any polynomial of degree as high as possible.

Gaussian Quadrature: $n=1$ Case

When $n=1$, the formula becomes

$$
I_{1}(f)=\sum_{j=1}^{1} w_{j} f\left(x_{j}\right)=w_{1} f\left(x_{1}\right) .
$$

There is one weight w_{1} and one node x_{1}.

We determined that $w_{1}=2$ and $x_{1}=0$ giving the Λ_{1} rule

$$
\int_{-1}^{1} f(x) d x \approx I_{1}(f)=2 f(0) .
$$

Gaussian Quadrature: $n=2$ Case

When $n=2$, the formula becomes

$$
I_{2}(f)=\sum_{j=1}^{2} w_{j} f\left(x_{j}\right)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

There are two weights $\left\{w_{1}, w_{2}\right\}$ and two nodes $\left\{x_{1}, x_{2}\right\}$.

We determined that $w_{1}=w_{2}=1$ with $x_{1}=-\frac{1}{\sqrt{3}}$ and $x_{2}=\frac{1}{\sqrt{3}}$. This gives the rule

$$
\int_{-1}^{1} f(x) d x \approx I_{2}(f)=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) .
$$

Gaussian Quadrature: $I_{2}(f)=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)$
Use $I_{2}(f)$ to approximate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$. Compare the result to the true value $\frac{\pi}{2}$.
$f(x)=\frac{1}{1+x^{2}} \quad$ (the integrand)

$$
\begin{aligned}
& I_{2}(f)=f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) \\
&= \frac{1}{1+\left(\frac{-1}{\sqrt{3}}\right)^{2}}+\frac{1}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{1}{1+\frac{1}{3}}+\frac{1}{1+\frac{1}{3}}=\frac{3}{4}+\frac{3}{4} \\
&=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

Gaussian Quadrature for $n>2$

We would insist that the formula $I_{n}(p)$ is exact for $p(x)=1, x, x^{2}, \ldots, x^{2 n-1} .{ }^{1}$ We'll get a nonlinear system of $2 n$ equations

$$
\begin{aligned}
w_{1}+w_{2}+\cdots+w_{n}= & 2 \\
w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}= & 0 \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2}+\cdots+w_{n} x_{n}^{2}= & \frac{2}{3} \\
\vdots & \vdots \\
w_{1} x_{1}^{2 n-2}+w_{2} x_{2}^{2 n-2}+\cdots+w_{n} x_{n}^{2} 2 n-2= & \frac{2}{2 n-1} \\
w_{1} x_{1}^{2 n-1}+w_{2} x_{2}^{2 n-1}+\cdots+w_{n} x_{n}^{2 n-1}= & 0
\end{aligned}
$$

${ }^{1}$ This is $2 n$ conditions for the $2 n$ unknowns $\left\{w_{1}, \ldots, w_{n}\right\}$ and $\left\{x_{1}, \ldots .{ }_{\ldots}, x_{n}\right\}$.

Gaussian Quadrature for $n>2$

Fortunately, solutions for various n values are known. Table 5.7 (pg. 223) in Atkinson and Han shows the weights and nodes for $n=2,3, \ldots, 8$.

For example, the weights and nodes for $I_{3}(f)$ are

$$
\begin{gathered}
w_{1}=\frac{5}{9}, \quad w_{2}=\frac{8}{9} \quad \text { and } \quad w_{3}=\frac{5}{9} \\
x_{1}=-\sqrt{\frac{3}{5}}, \quad x_{2}=0, \quad \text { and } \quad x_{3}=\sqrt{\frac{3}{5}} .
\end{gathered}
$$

Read the table carefully in the text. The weights for corresponding nodes are aligned in the table.

Example for $n=3$
Use $I_{3}(f)$ to approximate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$. Compare the result to the true value $\frac{\pi}{2}$.

$$
\begin{aligned}
& x_{1}=\sqrt{3 / 3} \quad w_{1}=\frac{5}{9} \quad x_{2}=0 \quad w_{2}=\frac{8}{9} \quad x_{3}=\sqrt{\frac{3}{5}} \quad w_{3}=\frac{5}{9} \\
& I_{3}(f)=\frac{5}{9} f(-\sqrt{3 / 5})+\frac{8}{9} f(0)+\frac{5}{9} f(\sqrt{3} / 5) \\
& f(x)=\frac{1}{1+x^{2}} \\
& \left.f\left(\pm \sqrt{\frac{3}{5}}\right)=\frac{1}{1+(\pm \sqrt{3} / s}\right)^{2}=\frac{1}{1+3 / 5}=\frac{5}{8}
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=\frac{1}{1+0^{2}}=1 \\
& \int_{-1}^{1} \frac{d x}{1+x^{2}} d x \approx I_{3}(f)=\frac{5}{9} \cdot \frac{5}{8}+\frac{8}{9} \cdot 1+\frac{5}{9} \cdot \frac{5}{8} \\
&=\frac{25}{72}+\frac{64}{72}+\frac{25}{72}=\frac{114}{72} \\
&=\frac{57}{36}=1.58 \overline{33} \\
& \frac{\pi}{2}=1.570796
\end{aligned}
$$

Other Intervals

Suppose we wish to evaluate

$$
\int_{a}^{b} f(x) d x
$$

We'd like a change of variables $x \rightarrow t$ so that $-1 \leq t \leq 1$ when $a \leq x \leq b$. We already know that

$$
t=\frac{2}{b-a}(x-a)-1, \quad \text { i.e. } \quad x=\frac{b-a}{2}(t+1)+a
$$

does the trick. This gives $d x=\frac{b-a}{2} d t$ so that

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2} \int_{-1}^{1} g(t) d t
$$

where

$$
g(t)=f\left(\frac{b-a}{2}(t+1)+a\right) .
$$

Example
Use $I_{2}(f)$ to approximate

$$
\begin{aligned}
\int_{0}^{1} \sqrt{x} d x & a=0 \text { and } b=1 \\
x & =\frac{b-a}{2}(t+1)+a=\frac{1-0}{2}(t+1)+0=\frac{1}{2}(t+1) \\
f(x) & =\sqrt{x} \Rightarrow g(t)=\sqrt{\frac{1}{2}(t+1)} \\
\int_{0}^{1} \sqrt{x} d x & =\frac{1-0}{2} \int_{-1}^{1} \sqrt{\frac{1}{2}(t+1)} d t=\frac{1}{2} \int_{-1}^{1} \sqrt{\frac{1}{2}(t+1)} d t
\end{aligned}
$$

$$
\begin{aligned}
\approx I_{2}(g) & =g\left(\frac{-1}{\sqrt{3}}\right)+g\left(\frac{1}{\sqrt{3}}\right) \\
& =\frac{1}{2} \sqrt{\frac{1}{2}\left(\frac{-1}{\sqrt{3}}+1\right)}+\frac{1}{2} \sqrt{\frac{1}{2}\left(\frac{1}{\sqrt{3}}+1\right)} \\
& \doteq 0.67389
\end{aligned}
$$

Comparison of Methods

$$
\begin{gathered}
\int_{0}^{1} \sqrt{x} d x=\frac{2}{3}=0.66667 \\
I_{2}(f)=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)=0.67389, \quad f(t)=\frac{1}{2} \sqrt{\frac{t+1}{2}} \\
T_{4}(f)=\frac{1}{8}\left[\sqrt{0}+2 \sqrt{\frac{1}{4}}+2 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{3}{4}}+\sqrt{1}\right]=0.64328 \\
S_{4}(f)=\frac{1}{12}\left[\sqrt{0}+4 \sqrt{\frac{1}{4}}+2 \sqrt{\frac{1}{2}}+4 \sqrt{\frac{3}{4}}+\sqrt{1}\right]=0.65653
\end{gathered}
$$

The errors are
$I-I_{2}=-0.00722, \quad I-T_{4}=0.02338, \quad$ and $\quad I-S_{4}=0.01014$

