March 3 Math 2306 sec 58 Spring 2016

Section 8: Homogeneous Equations with Constant Coefficients

We consider a linear, homogeneous equation with constant coefficients

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_0 y = 0.$$

We seek solutions of the form $y = e^{mx}$ for constant m, and obtain the characteristic (a.k.a. auxiliary) equation

$$a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0$$

Higer Order Linear Constant Coefficient ODEs

- ► The same approach applies. For an n^{th} order equation, we obtain an n^{th} degree polynomial.
- ► Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos(\beta x)$ and $e^{\alpha x} \sin(\beta x)$.
- ► If a root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), \ e^{\alpha x}\sin(\beta x), \ xe^{\alpha x}\cos(\beta x), \ xe^{\alpha x}\sin(\beta x), \dots,$$

 $x^{k-1}e^{\alpha x}\cos(\beta x), \ x^{k-1}e^{\alpha x}\sin(\beta x)$

It may require a computer algebra system to find the roots for a high degree polynomial.

Example

Solve the ODE

$$y'''-3y''+3y'-y=0$$

Charactuistiz egn.

$$m^3 - 3m^2 + 3m - 1 = 0$$

$$(m-1)^3 = 0 \Rightarrow m=1$$
 repeated
root root
 $x^2 \times x^2 \times$

The general solution is
$$y = C_1 y_1 + C_2 y_2 + C_3 y_3$$

$$y = C_1 e + C_2 x e + C_3 x^2 e$$

Example

Solve the ODE

$$\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = 0$$

Characteristic egn:

side note

$$m^2 + 1 = 0$$

 $m^2 = -1$
 $m = \pm 0$

$$M^{4} + 2m^{2} + 1 = 0$$

 $(m^{2} + 1)^{2} = 0$
 $(m - i)^{2} (m + i)^{2} = 0$
 $m = \pm i$ the constant points
 $m = \pm i$ pair double

$$y_1 = e^{\circ x} Cos(\underline{I}_x) = Cos x$$

 $y_2 = e^{\circ x} Sin(\underline{I}_x) = Sin x$
 $y_3 = xe^{\circ x} Cos(\underline{I}_x) = x^{(os x)}$
 $y_4 = xe^{\circ x} Sin(\underline{I}_x) = x^{(os x)}$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example

Find a particular solution of the ODE

$$y''-4y'+4y=8x+1$$
We could ask what sort of function y might solve the ODE. Since $g(x)$ is a line, we might guess that y_p is a line.

Suppose $y_p = Ax+B$, A,B -(onstants)

Substitute into the ODE

March 1, 2016 8 / 48

$$y_{p} = A \times + B$$
 We require
 $y_{p}'' = A$ $y_{p}'' - 4y_{p}' + 4y_{p} = 8 \times + 1$
 $y_{p}'' = 0$ $0 - 4(A) + 4(A \times + B) = 8 \times + 1$
 $4A \times + (-4A + 4B) = 8 \times + 1$

So the solution

is a ponticular solution of the ODE,

The Method: Assume y_p has the same **form** as g(x)

Let's suppose that
$$y_p = Ae^{3x}$$

Let's suppose that $y_p = Ae^{3x}$ for constant A.
 $y_p = Ae^{3x}$ we require
$$y_p'' = 3Ae^{3x}$$

$$y_p'' = 9Ae^{3x}$$

11 / 48

This is true if A=6.

A particular solution is

March 1, 2016 12 / 48

Make the form general

eral
$$y'' - 4y' + 4y = 16x^2$$

$$\cos^2 x \cos^2 x \cos^2$$

Since good is a constant times x2, let's guess that yp= Ax2. We seguine yp" - 45p + 4yp = 16x2 50 : Ax 2A -4(2Ax)+4(Ax2) = 16x2 yp' = 2A × 4A2-8Ax + 2A = 162+0x + 0 ye" = 2A

This requires
$$4=16$$
, $-8A=0$, $2A=0$ Which requires $A=4$ AND $A=0$.

Since g(x) is a quadratic, let's try again with yp=Ax2+Bx+C

$$y_{p}^{2} = Ax^{2} + Bx + C$$
 $y_{p}^{2} = -45y + 4y_{p} = 16x^{2}$
 $y_{p}^{2} = 2Ax + B$
 $2A - 4(2Ax + B) + 4(Ax^{2} + Bx + C) = 16x^{2}$
 $y_{p}^{2} = 2A$

$$4A = 16 \Rightarrow A=4$$

 $-8A+4B = 0 \Rightarrow 4B=8A \Rightarrow B=2A=2.4=8$
 $2A-4B+4C=0$
 $4C=4B-2A=4.8-2.4=24$

General Form: sines and cosines
$$y'' - y' = 20 \sin(2x)$$
 $\cos^{2x}(2x)$

$$y''-y'=20\sin(2x)$$

Let's givess that
$$y_p = A \sin(2x)$$

 $y_p = A \sin(2x)$
 $y_p' = A \sin(2x)$
 $y_p'' = 2 A \cos(2x)$
 $y_p''' = -4 A \sin(2x)$
 $y_p''' = -4 A \sin(2x)$

This requires -4A=20 and -2A=0

A con't be -5 AND 0.

To correct this, we should assume that $y_p = A \sin(2x) + B \cos(2x)$.