March 3 Math 2306 sec 58 Spring 2016

Section 8: Homogeneous Equations with Constant Coefficients

We consider a linear, homogeneous equation with constant coefficients

$$
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{0} y=0
$$

We seek solutions of the form $y=e^{m x}$ for constant m, and obtain the characteristic (a.k.a. auxiliary) equation

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Solve the ODE $3^{\text {rd }}$ order so we need

$$
y_{1}, y_{2}, y_{3}
$$

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Charactuistiz egn.

$$
\begin{gathered}
m^{3}-3 m^{2}+3 m-1=0 \\
(m-1)^{3}=0 \Rightarrow m=1 \quad \begin{array}{l}
\text { repeated } \\
\text { root rot }
\end{array} \\
y_{1}=e^{x}, y_{2}=x e^{x}, y_{3}=x^{2} e^{x}
\end{gathered}
$$

The general solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3} \\
& y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
\end{aligned}
$$

Example
Solve the ODE

$$
\frac{d^{4} y}{d x^{4}}+2 \frac{d^{2} y}{d x^{2}}+y=0
$$

Characteristic eqn:
side note

$$
m^{4}+2 m^{2}+1=0
$$

$$
\left(m^{2}+1\right)^{2}=0
$$

$$
\begin{aligned}
m^{2}+1 & =0 \\
m^{2} & =-1 \\
m & = \pm i
\end{aligned}
$$

th ordn, we need

$$
y_{1}, y_{2}, y_{3}, y_{4}
$$

$$
(n-i)^{2}(n+i)^{2}=0
$$

$m= \pm i$ the con jus are pots pair double
$\alpha \pm i \beta$ here $\alpha=0$ and $\beta=1$

$$
\begin{aligned}
& y_{1}=e^{0 x} \cos (1 x)=\cos x \\
& y_{2}=e^{0 x} \sin (1 x)=\sin x \\
& y_{3}=x e^{0 x} \cos (1 x)=x \cos x \\
& y_{4}=x e^{0 x} \sin (1 x)=x \sin x
\end{aligned}
$$

The geneacel solution is

$$
y=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

we could ask what sort of function y might solve the ODE. Since $g(x)$ is a line, we might guess that y_{p} is a line.
suppose $y_{p}=A x+B, A, B$-constants
substitute into the ODE
$y_{p}=A x+B$ we require

$$
\begin{array}{ll}
y_{p}=A x+1 & y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1 \\
y_{p}^{\prime \prime}=0 & 0-4(A)+4(A x+B)=8 x+1 \\
& 4 A x+(-4 A+4 B)=8 x+1
\end{array}
$$

This holds provided

$$
\begin{aligned}
4 A & =8 \quad \text { and } \\
-4 A+4 B & =1
\end{aligned}
$$

$$
\text { i.. } A=2 \text { and } 4 B=1+4 A=1+4 \cdot 2=9 \Rightarrow B=\frac{9}{4}
$$

So the solution

$$
y_{p}=2 x+\frac{9}{4}
$$

is a particular solution of the ODE,

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{3 x}
$$

Let's suppose that $y_{p}=A e^{3 x}$ for constant A.

$$
\begin{aligned}
& y_{p}=A e^{3 x} \\
& y_{p}^{\prime}=3 A e^{3 x} \\
& y_{p}^{\prime \prime}=9 A e^{3 x}
\end{aligned}
$$

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{3 x}
$$

$$
9 A e^{3 x}-4\left(3 A e^{3 x}\right)+4 A e^{3 x}=6 e^{3 x}
$$

$$
(9-12+4) A e^{3 x}=6 e^{3 x}
$$

$$
A e^{3 x}=6 e^{3 x}
$$

This is true if $A=6$.

A particular solution is

$$
y_{p}=6 e^{3 x}
$$

(That $g(x)=6 e^{3 x}$ as well is a coincidence.)

Make the form general

Since $g(x)$ is a constant times x^{2}, let's guess that $y_{p}=A x^{2}$
we require

$$
\begin{aligned}
& y_{p}=A x^{2} \\
& y_{p}^{\prime}=2 A x \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y p=16 x^{2}
$$

$$
2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2}
$$

$$
4 A x^{2}-8 A x+2 A=16 x^{2}+0 x+0
$$

This requires $\quad 4 A=16,-8 A=0, \quad 2 A=0$ which requires $A=4$ AND $\quad A=0$.

Since $g(x)$ is a quadratic, let's try again with $y_{\rho}=A x^{2}+B x+C$

$$
\begin{aligned}
& y_{p}=A x^{2}+B x+C \\
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2}
$$

$$
2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2}
$$

$$
4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
$$

The requires

$$
\left.\begin{array}{rl}
4 A \Rightarrow A & =16 \Rightarrow A \\
-8 A+4 B & =0 \Rightarrow 4 B \\
2 A-4 B+4 C & =0 \\
4 C & =4 B-2 A
\end{array}\right)=4.4 \text { C } \quad=6
$$

$$
-8 A+4 B=0 \Rightarrow 4 B=8 A \Rightarrow B=2 A=2 \cdot 4=8
$$

$$
4 C=4 B-2 A=4 \cdot 8-2 \cdot 4=24
$$

So

$$
y_{p}=4 x^{2}+8 x+6
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

Let's guess that $y_{p}=A \sin (2 x)$

$$
\begin{aligned}
& y_{p}=A \sin (2 x) \\
& y_{p}^{\prime}=2 A \cos (2 x) \\
& y_{p}^{\prime \prime}=-4 A \sin (2 x)
\end{aligned}
$$

we need

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}=20 \sin (2 x) \\
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
\end{gathered}
$$

This requiems $-4 A=20$ and $-2 A=0$
A cont be -5 AND 0 .

To correct this, we should assume
that

$$
y_{p}=A \sin (2 x)+B \cos (2 x)
$$

