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Section 4.2: Error in Polynomial Interpolation

We consider a polynomial interpolation Pn for a set of data
{(xi , yi), i = 0, . . .n | yi = f (xi)}.

Theorem: For n ≥ 0, suppose f has n + 1 continuous derivatives on
[a,b] and let x0, . . . , xn be distinct nodes in [a,b]. Then

f (x)− Pn(x) = (x − x0)(x − x1) · · · (x − xn)
f (n+1)(cx )

(n + 1)!

where cx is some number between the smallest and largest values of
x0, . . . , xn and x .
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Error f (x)− Pn(x)

The error can be restated as

Err(Pn(x)) = Ψn(x)
f (n+1)(cx )

(n + 1)!

where Ψn is the n + 1 degree monic polynomial

Ψn(x) = (x − x0) · · · (x − xn) = xn+1 + terms with smaller powers

The coefficients of those smaller powers depend on x0, . . . , xn.

The error depends on the y ’s due to f (n+1)(cx ), and on the x ’s due
to Ψn(x).
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Error in Ψn(x): Equally Spaced Nodes
We found the general results for n = 1 and n = 2 if the points are all h
units apart:

I For |x1 − x0| = h, the maximum value of |Ψ1(x)| is M = h2

4 for x
between x0 and x1.

I For h = |x2 − x1| = |x1 − x0|, the maximum value of |Ψ2(x)| is
M = 2h3

3
√

3
for x between the largest and smallest of x0, x1 and x2.

A slightly more complicated analysis can be used to show that for
equally spaced nodes (in order) {x0, . . . , x3} each h units apart,

|Ψ3(x)| ≤ h4 for x0 ≤ x ≤ x3.
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Example
Use the result |Ψ3(x)| ≤ h4 for x0 ≤ x ≤ x3. for equally spaced
nodes to bound the error.

Suppose that P3(x) is used to approximate f (x) = ex over the interval
[0,1] using equally spaced points with x0 = 0, x3 = 1. Find a bound on
the error

|ex − P3(x)|
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Figure: Left: Plot of P3 for f (x) = ex with nodes (in red) at {0,1/3,2/3,1}.
Right: Plot of the error |ex − P3(x)|. The function P3 was generated
numerically using the Matlab program interpNDD.m available in D2L.

March 2, 2016 8 / 52



Behavior of Ψ(x)

If we can choose our nodes, an obvious choice is to make them
equally spaced. But the question arises:

Question: Are equally spaced nodes the best choice for minimizing
error?

(Here we’re going to discuss section 4.2.2, then move to section 4.5,
and later come back to section 4.3.)
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Motivating Example

Suppose we wish to use P4(x) to interpolate a function f (x) on the
interval [−1,1]. We know that the error

|f (x)− P4(x)| =

∣∣∣∣∣(x − x0) · · · (x − x4)
f (5)(cx )

5!

∣∣∣∣∣ ≤ ML

where

L = max

∣∣∣∣∣ f (5)(cx )

5!

∣∣∣∣∣ and M = max|(x − x0) · · · (x − x4)|

March 2, 2016 10 / 52



Motivating Example
Let’s see what kind of control we may have over M. We can consider
two examples of the function (x − x0) · · · (x − x4) over the interval
[−1,1].

Equally Spaced Points: Ψ4,1(x) = (x + 1)(x + 1
2)x(x − 1

2)(x − 1)

Not Equally Spaced:
Ψ4,2(x) = (x − x0)(x − x1)(x − x2)(x − x3)(x − x4) where

x0 = cos
( π

10

)
≈ 0.9511, x1 = cos

(
3π
10

)
≈ 0.5878,

x2 = cos
(

5π
10

)
= 0, x3 = cos

(
7π
10

)
≈ −0.5878,

and x4 = cos
(

9π
10

)
≈ −0.9511
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Figure: Two choices of nodes for P4 on [−1,1]. Red dots are equally spaced
nodes, and blue dots are an alternative choice (Chebyshev nodes).
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Figure: Plot of Ψ4,1(x) and Ψ4,2(x) shows that Ψ4,2 has a smaller maximum
value.
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Motivating Example Continued...

The maximum value of Ψ4,1(x) is ≈ 0.1135. The maximum value of
Ψ4,2(x) is 0.0625.

The error when using equally spaced nodes is 1.8 times as great
as the error when using the alternative choice of nodes!
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Error for Equally Spaced Nodes

When equally spaced nodes are used, the behavior at the ends (near
a and b) can be quite dramatic. The error for x in the middle may be
small, while the error for x near the ends is much larger.

If f (n+1)(x) is ill behaved, it’s possible that taking n larger results
in more error rather than less!

A special case of this is the function

f (x) =
1

1 + x2 for − 5 ≤ x ≤ 5

(See the next two slides.)
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Figure: Plots of (x − x0) · · · (x − xn) for equally spaced nodes on [0,1] for
n = 2,4,6 and 8. Note that the local extrema seem to get pushed toward the
ends of the interval as n increases.
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Figure: Plot of y = 1
1+x2 (red) together with degree 10 polynomial interpolation

P10(x) (blue dash) obtained using equally spaced nodes on [−5,5].
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Alternatives to Equally Spaced Nodes

Recall that for the example using P4 we considered the seemingly
strange nodes

x0 = cos
( π

10

)
≈ 0.9511, x1 = cos

(
3π
10

)
≈ 0.5878,

x2 = cos
(

5π
10

)
= 0, x3 = cos

(
7π
10

)
≈ −0.5878,

and x4 = cos
(

9π
10

)
≈ −0.9511

It turns out that there is a motivation for using these even though they
appear more complicated than just taking equally spaced ones.
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Alternatives to Equally Spaced Nodes

When can one choose nodes:
I when picking a partition for numerical integration (see chapter 5 in

Atkinson & Han).
I when choosing a grid for computer generated graphics
I when interpolating a function when nodes are not pre-specified.

Of course, when presented with raw data, one may not have the option
of picking one’s nodes.
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Section 4.5 (& 4.6): Chebyshev Polynomials

Definition: For an integer n ≥ 0 define the function

Tn(x) = cos
(

n cos−1(x)
)
, −1 ≤ x ≤ 1.

It can be shown that Tn is a polynomial of degree n. It’s called the

Chebyshev Polynomial of degree n.
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Chebyshev Polynomials
Determine the polynomials T0(x), T1(x), and T2(x) in the form of
ordinary polynomials.
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Recursion Relation
T0(x) = 1 and T1(x) = x . It can be shown that for n ≥ 1

Tn+1(x) = 2xTn(x)− Tn−1(x).

Compute T2(x) and T3(x) using this relation.
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Figure: Plot of the first six Chebyshev Polynomials (of the first kind). T0, T1,
and T2 are shown on the left, and T3, T4, and T5 are shown on the right.
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Figure: Plot of all of the first six Chebyshev polynomials (of the first kind).
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Some Properties of Chebyshev Polynomials

I Tn is an even function if n is even and an odd function if n is odd.

I Tn(1) = 1 and Tn(−1) = (−1)n for every n

I They have an orthogonality relation∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 0 n 6= m.

I And the main property we’re interested in

|Tn(x)| ≤ 1 for all − 1 ≤ x ≤ 1
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Minimum Size Property

We can note that

Tn(x) = 2n−1xn + terms with lower powers.

We define the modified Chebyshev polynomials by

T̃n(x) =
1

2n−1 Tn(x).

Remark: The modified Chebyshev polynomials are monic
polynomials. That is

T̃n(x) = xn + terms with lower powers.
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Minimum Size Property

Theorem: Let n ≥ 1 be an integer. Of all monic polynomials on the
interval [−1,1], the one with the smallest maximum value is the
modified Chebyshev polynomial T̃n(x). Moreover

|T̃n(x)| ≤ 1
2n−1 for all − 1 ≤ x ≤ 1.

This result suggests that whenever possible, we choose the
polynomial Ψn(x) in our error theorem to be the modified
Chebyshev polynomial T̃n+1(x).

March 2, 2016 28 / 52



Chebyshev Nodes

Since T̃n+1(x) is monic, it can be written as

T̃n+1(x) = (x − r0)(x − r1) · · · (x − rn)

where r0, . . . , rn are the roots of Tn+1(x).

We had the polynomial in our error formula

Ψn(x) = (x − x0)(x − x1) · · · (x − xn).

So to minimize the error—i.e. make Ψn(x) = T̃n+1(x)—we would have
to

choose the nodes xj to be the roots rj of the Chebyshev
polynomial Tn+1.
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Example: Chebyshev Nodes
Use the change of variables x = cos θ to find the five roots of T5(x).

T5(x) = cos
(

5 cos−1(x)
)
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Chebyshev Nodes
Find a formula for the k roots of Tk (x) = cos

(
k cos−1(x)

)
.
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Chebyshev Nodes

To interpolate f (x) on the interval [−1,1] by Pn(x), the error is
minimized by choosing the Chebyshev nodes (roots of Tn+1(x))

xj = cos
(

(2j + 1)π

2(n + 1)

)
, j = 0,1, . . .n.

The resulting error bound is

|f (x)− Pn(x)| ≤ L
2n , where L = max

−1≤x≤1

f (n+1)(x)

(n + 1)!
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Example
Let f (x) = e2x on [−1,1]. Determine the Chebyshev nodes if P3(x) is
being used to approximate f (x), and determine the resulting error
bound.

March 2, 2016 39 / 52



March 2, 2016 40 / 52


