March 4 MATH 1112 sec. 52 Spring 2020

Inverse Trigonometric Functions

Figure: Inverse Cosine: To define an inverse cosine function, we start by restricting the domain of $\cos (x)$ to the interval $[0, \pi]$

The Inverse Cosine Function (a.k.a. arccosine function)

Definition: For x in the interval $[-1,1]$ the inverse cosine of x is denoted by either

$$
\cos ^{-1}(x) \text { or } \arccos (x)
$$

and is defined by the relationship

$$
y=\cos ^{-1}(x) \quad \Longleftrightarrow \quad x=\cos (y) \quad \text { where } \quad 0 \leq y \leq \pi .
$$

The Domain of the Inverse Cosine is $-1 \leq x \leq 1$.
The Range of the Inverse Cosine is $0 \leq y \leq \pi$.

The Graph of the Arccosine

Figure: Note that the domain is $-1 \leq x \leq 1$ and the range is $0 \leq y \leq \pi$.

Function/Inverse Function Relationship

For every x in the interval $[-1,1]$

$$
\cos \left(\cos ^{-1}(x)\right)=x
$$

For every x in the interval $[0, \pi]$

$$
\cos ^{-1}(\cos (x))=x
$$

Remark 1: If $x>1$ or $x<-1$, the expression $\cos ^{-1}(x)$ is not defined.
Remark 2: If $x>\pi$ or $x<0$, the expression $\cos ^{-1}(\cos (x))$ IS defined, but IS NOT equal to x.

Some Inverse Cosine Values

We can build a table of some inverse cosine values by using our knowledge of the cosine function.

Conceptual Definition

We can think of the inverse cosine function in the following way: $\cos ^{-1}(x)$ is the angle between 0 and π whose cosine is x.

Examples
Evaluate each expression exactly.
(a) $\cos ^{-1}(0)=\frac{\pi}{2}$
angle θ in $[0, \pi)$ such that $\cos \theta=0$
(b) $\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$ $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
we need θ in $[0, \pi]$ with $\operatorname{Cos} \theta=\frac{-1}{2}$

$$
\theta=\frac{2 \pi}{3}
$$

Question

The exact value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=$
(a) $\frac{\pi}{4}$
(b) $-\frac{\pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) $-\frac{3 \pi}{4}$

Examples

Evaluate each expression if possible. If undefined, state a reason.
(a) $\cos \left[\cos ^{-1}\left(\frac{1}{4}\right)\right]=\frac{1}{4}$
(b) $\cos \left[\cos ^{-1}(6)\right]$ - undefined 6 is not in
the donoin
of $\cos ^{-1} x$

Evaluate each expression if possible. If undefined, state a reason.
(c) $\cos ^{-1}\left[\cos \left(\frac{9 \pi}{8}\right)\right]=\frac{7 \pi}{8}$

Question

Evaluate $\cos ^{-1}\left[\cos \left(-\frac{\pi}{4}\right)\right]$

(b) $-\frac{\pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) $-\frac{3 \pi}{4}$

The Inverse Tangent Function

Figure: To define an inverse tangent function, we start by restricting the domain of $\tan (x)$ to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (Note the end points are NOT included!)

The Inverse Tangent Function (a.k.a. arctangent function)

Definition: For all real numbers x, the inverse tangent of x is denoted by

$$
\tan ^{-1}(x) \text { or by } \arctan (x)
$$

and is defined by the relationship

$$
y=\tan ^{-1}(x) \quad \Longleftrightarrow \quad x=\tan (y) \text { where }-\frac{\pi}{2}<y<\frac{\pi}{2} .
$$

The Domain of the Inverse Tangent is $-\infty<x<\infty$.
The Range of the Inverse Cosine is $-\frac{\pi}{2}<y<\frac{\pi}{2}$ (Note the strict inequalities.).

The Graph of the Arctangent

Figure: The domain is all real numbers and the range is $-\frac{\pi}{2}<y<\frac{\pi}{2}$. The graph has two horizontal asymptotes $y=-\frac{\pi}{2}$ and $y=\frac{\pi}{2}$.

Function/Inverse Function Relationship

For all real numbers x

$$
\tan \left(\tan ^{-1}(x)\right)=x
$$

For every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\tan ^{-1}(\tan (x))=x
$$

Remark 1:The expression $\tan ^{-1}(x)$ is always well defined.
Remark 2: If $x>\frac{\pi}{2}$ or $x<-\frac{\pi}{2}$, the expression $\tan ^{-1}(\tan (x))$ MAY BE defined, but IS NOT equal to x.

Some Inverse Tangent Values

We can build a table of some inverse tangent values by using our knowledge of the tangent function.

x	$\tan (x)$
$-\frac{\pi}{3}$	$-\sqrt{3}$
$-\frac{\pi}{4}$	-1
$-\frac{\pi}{6}$	$-\frac{1}{\sqrt{3}}$
0	0
$\frac{\pi}{6}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	1
$\frac{\pi}{3}$	$\sqrt{3}$

x	$\tan ^{-1}(x)$
$-\sqrt{3}$	$-\frac{\pi}{3}$
-1	$-\frac{\pi}{4}$
$-\frac{1}{\sqrt{3}}$	$-\frac{\pi}{6}$
0	0
$\frac{1}{\sqrt{3}}$	$\frac{\pi}{6}$
1	$\frac{\pi}{4}$
$\sqrt{3}$	$\frac{\pi}{3}$

Conceptual Definition

We can think of the inverse tangent function in the following way:
$\tan ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x.

