March 4 MATH 1112 sec. 52 Spring 2020 Inverse Trigonometric Functions

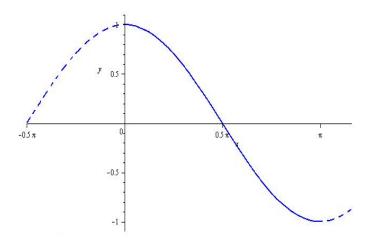


Figure: Inverse Cosine: To define an inverse cosine function, we start by restricting the domain of cos(x) to the interval $[0, \pi] \leftarrow cos(x) = 1$

The Inverse Cosine Function (a.k.a. arccosine function)

Definition: For x in the interval [-1, 1] the inverse cosine of x is denoted by either

$$\cos^{-1}(x)$$
 Or $\arccos(x)$

and is defined by the relationship

$$y = \cos^{-1}(x) \iff x = \cos(y)$$
 where $0 \le y \le \pi$.

The Domain of the Inverse Cosine is $-1 \le x \le 1$. The Range of the Inverse Cosine is $0 \le y \le \pi$.

• • • • • • • • • • • •

The Graph of the Arccosine

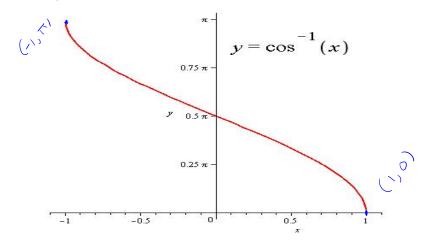


Figure: Note that the domain is $-1 \le x \le 1$ and the range is $0 \le y \le \pi$.

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\cos\left(\cos^{-1}(x)\right) = x$$

For every x in the interval $[0, \pi]$

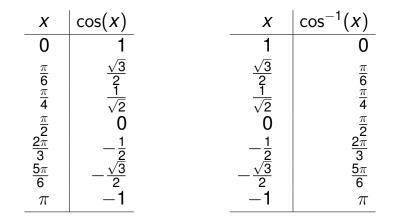
$$\cos^{-1}\left(\cos(x)\right)=x$$

Remark 1: If x > 1 or x < -1, the expression $\cos^{-1}(x)$ is not defined.

Remark 2: If $x > \pi$ or x < 0, the expression $\cos^{-1}(\cos(x))$ IS defined, but IS NOT equal to *x*.

Some Inverse Cosine Values

We can build a table of some inverse cosine values by using our knowledge of the cosine function.



Conceptual Definition

We can think of the inverse cosine function in the following way:

 $\cos^{-1}(x)$ is the *angle* between 0 and π whose cosine is *x*.

イロト 不得 トイヨト イヨト 二日

March 2, 2020

6/30

Examples

Evaluate each expression exactly.

(a)
$$\cos^{-1}(0) = \frac{1}{2}$$
 angle Θ in $[0,\pi)$ such that $\cos \Theta = 0$

(b)
$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

$$Cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
we need 0 in $[0,\pi]$
with $Cos 0 = \frac{1}{2}$
 $0 = \frac{2\pi}{3}$

イロト イヨト イヨト イヨト

March 2, 2020 7/30

2

Question

The exact value of
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) =$$

(a)
$$\frac{\pi}{4}$$

(b) $-\frac{\pi}{4}$
(c) $\frac{3\pi}{4}$
(d) $-\frac{3\pi}{4}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

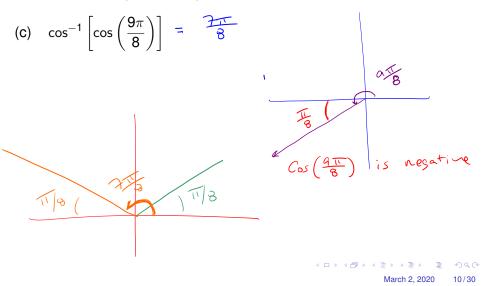
Examples

Evaluate each expression if possible. If undefined, state a reason.

(a)
$$\cos\left[\cos^{-1}\left(\frac{1}{4}\right)\right] = \frac{1}{4}$$

(b)
$$\cos\left[\cos^{-1}\left(6\right)\right]$$
 - undefined 6 is not in
the domain
of Gust X

< □ > < □ > < ■ > < ■ > < ■ > < ■ > = つへで March 2, 2020 9/30 Evaluate each expression if possible. If undefined, state a reason.



Question

Evaluate
$$\cos^{-1} \left[\cos \left(-\frac{\pi}{4} \right) \right]$$

(a) $\frac{\pi}{4}$
(b) $-\frac{\pi}{4}$
(c) $\frac{3\pi}{4}$
(d) $-\frac{3\pi}{4}$

▲ □ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ ≧
 March 2, 2020
 11/30

The Inverse Tangent Function

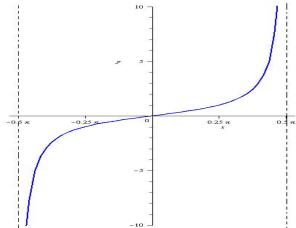


Figure: To define an inverse tangent function, we start by restricting the domain of tan(x) to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (Note the end points are NOT included!)

The Inverse Tangent Function (a.k.a. arctangent function)

Definition: For all real numbers *x*, the inverse tangent of *x* is denoted by

$$\tan^{-1}(x)$$
 or by $\arctan(x)$

and is defined by the relationship

$$y = an^{-1}(x) \iff x = an(y)$$
 where $-rac{\pi}{2} < y < rac{\pi}{2}$

The Domain of the Inverse Tangent is $-\infty < x < \infty$.

The Range of the Inverse Cosine is $-\frac{\pi}{2} < y < \frac{\pi}{2}$ (Note the strict inequalities.).

March 2, 2020 13/30

イロト イポト イラト イラト

The Graph of the Arctangent

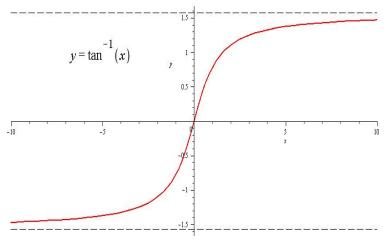


Figure: The domain is all real numbers and the range is $-\frac{\pi}{2} < y < \frac{\pi}{2}$. The graph has two horizontal asymptotes $y = -\frac{\pi}{2}$ and $y = \frac{\pi}{2}$.

Function/Inverse Function Relationship

For all real numbers x

$$an\left(an^{-1}(x)
ight)=x$$

For every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

 $\tan^{-1}(\tan(x)) = x$

Remark 1:The expression $tan^{-1}(x)$ is always well defined.

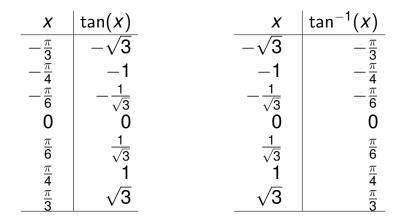
Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\tan^{-1}(\tan(x))$ MAY BE defined, but IS NOT equal to x.

> March 2, 2020

15/30

Some Inverse Tangent Values

We can build a table of some inverse tangent values by using our knowledge of the tangent function.



Conceptual Definition

We can think of the inverse tangent function in the following way:

 $\tan^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x.

gued and Th