March 4 Math 3260 sec. 51 Spring 2020

Section 4.2: Null & Column Spaces, Linear Transformations

Definition: Let A be an m x n matrix. The null space of A, denoted’
by Nul A, is the set of all solutions of the homogeneous equation
Ax = 0. That is

NulA = {x € R" | Ax = 0}.

We can say that Nul A is the subset of R" that gets mapped to the zero
vector under the linear transformation x — Ax.

'Some authors will write Null(A) with two ells.
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Theorem

For m x n matrix A, Nul A is a subspace of R".

» Obviously, A0 = 0. So 0 is in NulA.

» On the first exam, you showed that linear combinations of
solutions to a homogenous equation are also solutions to that
homogeneous equation.

So that establishes the necessary three properties for being a
subspace. As the next example shows, it is always possible to express
NulA as a span.
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Example

For a given matrix, a spanning set for NulA gives an explicit description
of this subspace. Find a spanning set for Nul A where
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Column Space

Definition: The column space of an m x n matrix A, denoted Col A,
is the set of all linear combinations of the columns of A. If
A=Ja; --- ap|,then

ColA = Span{ay,...,an}.

Note that this corresponds to the set of solutions b of linear equations
of the form Ax = b! That is

ColA={b e R™| b = Ax for some x € R"}.
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Theorem

The column space of an m x n matrix A is a subspace of R™.
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Corollary: Col A=R™ if and only if the equation Ax = b has a
solution for every b in R™.
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Example
Find a matrix A such that W = Col A where
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Example

2 4 -2 1
A=| -2 -5 7 38
3 7 -8 6

(a) If Col A is a subspace of R, what is k?

\L 3 _\/\M colom~ne OL A Ao\~ KR-

(b) If Nul A is a subspace of R, what is k?
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Example Continued...

2 4 -2 1 _32
A=| -2 -5 7 38|, and u= 1
3 7 -86 0

(¢) Is uin Nul A? Could u be in Col A?
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Example Continued...

2 4 -2 1 3
A=| -2 -5 7 38|, and v=| -1
3 7 -8 6 3
(c) Is vin Col A? Could v be in Nul A?
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Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation

T :V — Wis arule that assigns to each vector x in V a unique
vector T(x) in W such that

(i) T(u+v)=T(u)+ T(v)foreveryu,vin V, and

(i) T(cu) = cT(u) for every uin V and scalar c.
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Example: Differentiation
Recall that we defined the set C'(R) as the set of all real valued
functions with domain R that are one-times continuously differentiable.

A function f is in C'(R) if
> f'(x) exists, and
» f'(x) is continuous on (—oo, 00).

Let CO(R) denote the set of all real valued functions that are
continuous on R.

A function f is in C°(R) if f(x) is continuous on (—oo, 00).
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Example: Differentiation?
Define the transformation D by

D:C'(R) — C°(R), D(f)=f

Show that D is a linear transformation. ( (
Frane Colel f—x (ﬁ(xﬁ—g(v)) = Lo v 20

D(frg) - (Lo = §'vg' = DE) D)
A As s ~e_caQQ El%? (c—p(x)) = C\Cl(x) , se
D(ct) - (cf)‘: A eSS
Q_,D b S Q ‘/Q‘l/\—LQr‘ A-r‘fmj -Lnr‘/v\cvhbn.

?We can write D(f(x)) = Z.
March 2, 2020 15/19



Example
Characterize the subset® of C'(R) such that D(f) = 0.
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3The zero vector in C°(R) is the function z(x) = 0 for all.x.
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Range and Kernel

Definition: The range of a linear transformation 7 : V — W is the
set of all vectors in W of the form T(x) for some x in V. (The set of all
images of elements of V.)

Definition: The kernel of a linear transformation 7 : V — W is the
set of all vectors x in V such that T(x) = 0. (The analog of the null
space of a matrix.)

Theorem: Given linear transformation T : V — W, the range of T is
a subspace of W and the kernel of T is a subspace of V.
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Example
Consider T : C'(R) — C°(R) defined by

df

T(f) = ax + af(x), « afixed constant.

(a) Express the equation that a function y must satisfy if y is in the
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Example T : C'(R) — C°(R)

f
T(f) = gx + af(x) « afixed constant.

(b) Show that for any scalar ¢, y = ce~*¥ is in the kernel of T.
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