March 4 Math 3260 sec. 51 Spring 2020

Section 4.2: Null & Column Spaces, Linear Transformations

Definition: Let A be an $m \times n$ matrix. The **null space** of A, denoted by Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$ That is

$$\mathsf{Nul}\, A = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}.$$

We can say that Nul A is the subset of \mathbb{R}^n that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.

 $^{^{1}}$ Some authors will write Null(A) with two ells.

Theorem

For $m \times n$ matrix A, Nul A is a subspace of \mathbb{R}^n .

- ▶ Obviously, $A\mathbf{0} = \mathbf{0}$. So $\mathbf{0}$ is in NulA.
- ▶ On the first exam, you showed that linear combinations of solutions to a homogeneous equation are also solutions to that homogeneous equation.

So that establishes the necessary three properties for being a subspace. As the next example shows, it is always possible to express Nul A as a span.

March 2, 2020

2/19

For a given matrix, a spanning set for Nul A gives an explicit description of this subspace. Find a spanning set for Nul A where

$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 1 & 2 & 6 & -5 \end{bmatrix}.$$
Well or on met
$$A \Rightarrow \begin{bmatrix} 1 & 6 & 2 & -1 \\ 0 & 1 & 2 & -2 \end{bmatrix}$$

$$A \Rightarrow \begin{bmatrix} 1 & 6 & 2 & -1 \\ 0 & 1 & 2 & -2 \end{bmatrix}$$

$$X_1 = -2X_3 + 2X_1$$

$$X_2 = -2X_3 + 2X_1$$

$$X_3 = -2X_3 + 2X_1$$

So solutions
$$\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \chi_3 \begin{bmatrix} -2 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \chi_4 \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

the explicit description

$$NuQA = Spon \left\{ \begin{bmatrix} -2 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \right\}$$

Column Space

Definition: The **column space** of an $m \times n$ matrix A, denoted Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

$$ColA = Span\{a_1, \ldots, a_n\}.$$

Note that this corresponds to the set of solutions **b** of linear equations of the form $A\mathbf{x} = \mathbf{b}$! That is

$$ColA = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Corollary: Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .

Find a matrix A such that W = Col A where

$$W = \left\{ \left[egin{array}{c} 6a - b \ a + b \ -7a \end{array}
ight] \mid a,b \in \mathbb{R}
ight\}.$$

wed like to take an arbitrary element of W and write it as Ax for some matrix A.

$$\begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} = \begin{bmatrix} 6a \\ a \\ -7a \end{bmatrix} + \begin{bmatrix} -b \\ b \\ 0 \end{bmatrix}$$

March 2, 2020 7/19

$$= \alpha \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix} + b \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -1 \\ -7 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ b \end{bmatrix}$$
If we set $A = \begin{bmatrix} 6 & -1 \\ -7 & 0 \end{bmatrix}$, then

$$A = \left[\begin{array}{rrrr} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{array} \right]$$

(a) If Col A is a subspace of \mathbb{R}^k , what is k?

(b) If Nul A is a subspace of \mathbb{R}^k , what is k?

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

(c) Is **u** in Nul A? Could **u** be in Col A?

This not in Nul A

(a) Is
$$A\vec{x} = \vec{u}$$
 consistent? \vec{u} is in \mathbb{R}^4 , Col A .

3x4 4x1

1s a subspace of \mathbb{R}^3 , 50

No, \vec{u} is not in Col A .

No, to is not in Col A.

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(c) Is **v** in Col A? Could **v** be in Nul A?

in ColA.

(3) Is Av = 0? No, Av isn't defined column.
Singe V. is in TR3, No, V is not in NullA.

Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation $T:V\longrightarrow W$ is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for every \mathbf{u}, \mathbf{v} in V , and

(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every \mathbf{u} in V and scalar c.

Example: Differentiation

Recall that we defined the set $C^1(\mathbb{R})$ as the set of all real valued functions with domain \mathbb{R} that are one-times continuously differentiable.

A function f is in $C^1(\mathbb{R})$ if

- ightharpoonup f'(x) exists, and
- ▶ f'(x) is continuous on $(-\infty, \infty)$.

Let $C^0(\mathbb{R})$ denote the set of all real valued functions that are continuous on \mathbb{R} .

A function f is in $C^0(\mathbb{R})$ if f(x) is continuous on $(-\infty, \infty)$.

Example: Differentiation²

Define the transformation *D* by

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad D(f) = f'$$

Show that *D* is a linear transformation.

From ColcI
$$\frac{d}{dx}(f(x)+g(x)) = f'(x)+g'(x)$$

$$D(f+g) = (f+g)' = f'+g' = D(f)+D(g)$$
Also recall $\frac{d}{dx}(cf(x)) = cf'(x)$, so
$$D(cf) = (cf)' = cf' = cD(f)$$
So D is a linear transformation.

15/19

²We can write $D(f(x)) = \frac{df}{dx}$.

Characterize the subset³ of $C^1(\mathbb{R})$ such that D(f) = 0.

If
$$f'(x) = 0$$
 for all x then

 $f(x) = k$ for some constant k .

 $D(f) = 0$ requires $f(x)$ is constant.

The subset is the set of all constant functions.

16/19

 $^{^3}$ The zero vector in $C^0(\mathbb{R})$ is the function z(x)=0 for all x.

Range and Kernel

Definition: The **range** of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.)

Definition: The **kernel** of a linear transformation $T: V \longrightarrow W$ is the set of all vectors **x** in V such that $T(\mathbf{x}) = \mathbf{0}$. (The analog of the null space of a matrix.)

Theorem: Given linear transformation $T: V \longrightarrow W$, the range of T is a subspace of W and the kernel of T is a subspace of V.

Consider $T:C^1(\mathbb{R})\longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x)$$
, α a fixed constant.

(a) Express the equation that a function y must satisfy if y is in the kernel of T. y : s : n the kernel if T(y) = 0

$$T(y) = \frac{dy}{dx} + dy.$$
The equotion is
$$\frac{dy}{dx} + dy = 0$$

March 2, 2020 18/19

Example
$$T:C^1(\mathbb{R})\longrightarrow C^0(\mathbb{R})$$

$$T(f) = \frac{df}{dx} + \alpha f(x)$$
 α a fixed constant.

(b) Show that for any scalar c, $y = ce^{-\alpha x}$ is in the kernel of T.

We have to show that such y satisfies
$$\frac{dy}{dx} + \alpha y = 0$$
. Set $y = ce^{-\alpha x}$, then $\frac{dy}{dx} = ce^{-\alpha x}(-\alpha) = -\alpha ce^{-\alpha x}$
So $\frac{dy}{dx} + \alpha y = -\alpha ce^{-\alpha x} + \alpha (ce^{-\alpha x}) = 0$
Yes, $y = ce^{-\alpha x}$ is in the kernel of T .

←□ → ←□ → ← = → ← = → ○ へ ○

March 2, 2020 19/19