
March 4 Math 3260 sec. 55 Spring 2020

Section 4.2: Null & Column Spaces, Linear Transformations

Definition: Let A be an m × n matrix. The null space of A, denoted1

by Nul A, is the set of all solutions of the homogeneous equation
Ax = 0. That is

Nul A = {x ∈ Rn | Ax = 0}.

We can say that Nul A is the subset of Rn that gets mapped to the zero
vector under the linear transformation x 7→ Ax.

1Some authors will write Null(A) with two ells.
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Theorem

For m × n matrix A, Nul A is a subspace of Rn.

I Obviously, A0 = 0. So 0 is in NulA.

I On the first exam, you showed that linear combinations of
solutions to a homogenous equation are also solutions to that
homogeneous equation.

So that establishes the necessary three properties for being a
subspace. As the next example shows, it is always possible to express
NulA as a span.
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Example
For a given matrix, a spanning set for NulA gives an explicit description
of this subspace. Find a spanning set for Nul A where

A =

[
1 0 2 −1
1 2 6 −5

]
.

March 2, 2020 3 / 19

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen



March 2, 2020 4 / 19

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen



Column Space

Definition: The column space of an m × n matrix A, denoted Col A,
is the set of all linear combinations of the columns of A. If
A = [a1 · · · an], then

ColA = Span{a1, . . . ,an}.

Note that this corresponds to the set of solutions b of linear equations
of the form Ax = b! That is

ColA = {b ∈ Rm | b = Ax for some x ∈ Rn}.
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Theorem

The column space of an m × n matrix A is a subspace of Rm.

Corollary: Col A = Rm if and only if the equation Ax = b has a
solution for every b in Rm.
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Example
Find a matrix A such that W = Col A where

W =


 6a− b

a + b
−7a

 | a,b ∈ R

 .
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Example

A =

 2 4 −2 1
−2 −5 7 3
3 7 −8 6


(a) If Col A is a subspace of Rk , what is k?

(b) If Nul A is a subspace of Rk , what is k?
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Example Continued...

A =

 2 4 −2 1
−2 −5 7 3
3 7 −8 6

 , and u =


3
−2
−1
0


(c) Is u in Nul A? Could u be in Col A?

March 2, 2020 10 / 19

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen



Example Continued...

A =

 2 4 −2 1
−2 −5 7 3
3 7 −8 6

 , and v =

 3
−1
3


(c) Is v in Col A? Could v be in Nul A?
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Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation
T : V −→W is a rule that assigns to each vector x in V a unique
vector T (x) in W such that

(i) T (u + v) = T (u) + T (v) for every u,v in V , and

(ii) T (cu) = cT (u) for every u in V and scalar c.
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Example: Differentiation

Recall that we defined the set C1(R) as the set of all real valued
functions with domain R that are one-times continuously differentiable.

A function f is in C1(R) if
I f ′(x) exists, and
I f ′(x) is continuous on (−∞,∞).

Let C0(R) denote the set of all real valued functions that are
continuous on R.

A function f is in C0(R) if f (x) is continuous on (−∞,∞).
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Example: Differentiation2

Define the transformation D by

D : C1(R) −→ C0(R), D(f ) = f ′

Show that D is a linear transformation.

2We can write D(f (x)) = df
dx .
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Example
Characterize the subset3 of C1(R) such that D(f ) = 0.

3The zero vector in C0(R) is the function z(x) = 0 for all x .
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Range and Kernel

Definition: The range of a linear transformation T : V −→W is the
set of all vectors in W of the form T (x) for some x in V . (The set of all
images of elements of V .)

Definition: The kernel of a linear transformation T : V −→W is the
set of all vectors x in V such that T (x) = 0. (The analog of the null
space of a matrix.)

Theorem: Given linear transformation T : V −→W , the range of T is
a subspace of W and the kernel of T is a subspace of V .
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Example

Consider T : C1(R) −→ C0(R) defined by

T (f ) =
df
dx

+ αf (x), α a fixed constant.

(a) Express the equation that a function y must satisfy if y is in the
kernel of T .
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Example T : C1(R) −→ C0(R)

T (f ) =
df
dx

+ αf (x) α a fixed constant.

(b) Show that for any scalar c, y = ce−αx is in the kernel of T .
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