March 4 Math 3260 sec. 55 Spring 2020

Section 4.2: Null \& Column Spaces, Linear Transformations
Definition: Let A be an $m \times n$ matrix. The null space of A, denoted ${ }^{1}$ by $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}
$$

We can say that Nul A is the subset of \mathbb{R}^{n} that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.

[^0]
Theorem

For $m \times n$ matrix A, Nul A is a subspace of \mathbb{R}^{n}.

- Obviously, $A 0=0$. So 0 is in Nul A.
- On the first exam, you showed that linear combinations of solutions to a homogenous equation are also solutions to that homogeneous equation.

So that establishes the necessary three properties for being a subspace. As the next example shows, it is always possible to express NulA as a span.

Example
For a given matrix, a spanning set for Null gives an explicit description of this subspace. Find a spanning set for Vul A where

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & -1 \\
1 & 2 & 6 & -5
\end{array}\right]
$$

we con use an ret. for $A \vec{x}=\overrightarrow{0}$,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccccc}
1 & 0 & 2 & -1 & 0 \\
0 & 1 & 2 & -2 & 0
\end{array}\right] } \\
& x_{1}=-2 x_{3}+x_{4} \\
& x_{2}=-2 x_{3}+2 x_{4} \\
& x_{3}, x_{4} \text { - free }
\end{aligned}
$$

If $A \vec{x}=\overrightarrow{0}$ then $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{c}-2 \\ -2 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right]$
So Nne $A=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right]\right\}$

Column Space

Definition: The column space of an $m \times n$ matrix A, denoted $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{CoI} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} .
$$

Note that this corresponds to the set of solutions \mathbf{b} of linear equations of the form $A \mathbf{x}=\mathbf{b}$! That is

$$
\operatorname{Col} A=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}.
True by virtue of ColA defined as a span of a set of vectors in \mathbb{R}^{m}.

Corollary: $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.

Example
Find a matrix A such that $W=\operatorname{Col} A$ where

$$
W=\left\{\left.\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

we want to express a vector in W as a product $A \vec{x}$ for some matrix A.

$$
\begin{aligned}
{\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right] } & =\left[\begin{array}{c}
6 a \\
a \\
-7 a
\end{array}\right]+\left[\begin{array}{c}
-b \\
b \\
0
\end{array}\right] \\
& =a\left[\begin{array}{c}
6 \\
1 \\
-7
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
6 & -1 \\
1 & 1 \\
-7 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
\text { Taking } A & =\left[\begin{array}{cc}
6 & -1 \\
1 & 1 \\
-7 & 0
\end{array}\right], w=\operatorname{col} A .
\end{aligned}
$$

Example

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right]
$$

(a) If $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k}, what is k ? $k=3$ the columns ane in \prod^{3}
(b) If $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k}, what is k ?
$A \vec{x} \quad k=4 \quad A \vec{x}$ defined requires $3 \times 44 \times 1$

$$
\vec{x} \text { in } \mathbb{R}^{4}
$$

Example Continued...

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

(c) Is $\underset{\sigma}{\mathbf{u}}$ in $\operatorname{Nul} A$? Could $\underset{\mathcal{D}}{\mathbf{u}}$ be in $\operatorname{Col} A$?
(1) Is $A \vec{u}=\overrightarrow{0}$? $\quad A \vec{u}=\left[\begin{array}{c}0 \\ -3 \\ 3\end{array}\right] \neq \overrightarrow{0}$ \vec{u} is not in Nub A.
(2) No, \vec{u} is in \mathbb{R}^{4}, Col A is a subspace - of \mathbb{R}^{3}

Example Continued...

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right]
$$

(c) Is \mathbf{v} in $\mathrm{Col} A$? Could \mathbf{v} be in Nul A ?
(2)
(1) Is $A \vec{x}=\vec{v}$ consistent? $[A \vec{v}] \xrightarrow{\text { rret }}\left[\begin{array}{ccccc}1 & 0 & 9 & 0 & 5 \\ 0 & 1 & -5 & 0 & -3017 \\ 0 & 0 & 0 & 1 & 1 / 17\end{array}\right]$ Yes, so \vec{v} is in $\operatorname{col} A$.
(2) $A \vec{v}$ isnit defined since A is 3×4 and \vec{v} is 3×1 \vec{V} con't be in Nul A

Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in V, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every \mathbf{u} in V and scalar c.

Example: Differentiation

Recall that we defined the set $C^{1}(\mathbb{R})$ as the set of all real valued functions with domain \mathbb{R} that are one-times continuously differentiable.

A function f is in $C^{1}(\mathbb{R})$ if

- $f^{\prime}(x)$ exists, and
- $f^{\prime}(x)$ is continuous on $(-\infty, \infty)$.

Let $C^{0}(\mathbb{R})$ denote the set of all real valued functions that are continuous on \mathbb{R}.

A function f is in $C^{0}(\mathbb{R})$ if $f(x)$ is continuous on $(-\infty, \infty)$.

Example: Differentiation²
Define the transformation D by

$$
D: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R}), \quad D(f)=f^{\prime}
$$

Show that D is a linear transformation.
Recall from calculus that $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$ For f, g in $C^{\prime}(\mathbb{R})$

$$
D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)
$$

Also, $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$.

$$
\text { So } D(c f)=(c f)^{\prime}=c f^{\prime}=c D(f)
$$

D is a linear trans formation.
${ }^{2}$ We can write $D(f(x))=\frac{d f}{d x}$.

Example
Characterize the subset ${ }^{3}$ of $C^{1}(\mathbb{R})$ such that $D(f)=0$.

$$
\text { If } \frac{d}{d x} f(x)=0 \text { then } f \text { is }
$$

constant function, $f(x)=k$ for.
some constant k.
The subset is the set of all constant functions with domain \mathbb{R}.
${ }^{3}$ The zero vector in $C^{0}(\mathbb{R})$ is the function $z(x)=0$ for all x.

Range and Kernel

Definition: The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.)

Definition: The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors \mathbf{x} in V such that $T(\mathbf{x})=\mathbf{0}$. (The analog of the null space of a matrix.)

Theorem: Given linear transformation $T: V \longrightarrow W$, the range of T is a subspace of W and the kernel of T is a subspace of V.

Example

Consider $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$ defined by

$$
T(f)=\frac{d f}{d x}+\alpha f(x), \quad \alpha \text { a fixed constant. }
$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

$$
\begin{gathered}
y \text { in the kernel means } T(y)=0 \\
\text { If } T(y)=0 \text { then } \\
\frac{d y}{d x}+\alpha y=0
\end{gathered}
$$

Example $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$

$$
T(f)=\frac{d f}{d x}+\alpha f(x) \quad \alpha \text { a fixed constant. }
$$

(b) Show that for any scalar $c, y=c e^{-\alpha x}$ is in the kernel of T.
we have to show that $\frac{d y}{d x}+\alpha y=0$
If $y=c e^{-\alpha x}$, then $\frac{d y}{d x}=c e^{-\alpha x}(-\alpha)$

$$
=-\alpha c e^{-\alpha x}
$$

Then $\frac{d y}{d x}+\alpha y=-\alpha c e^{-\alpha x}+\alpha\left(c e^{-\alpha x}\right)=0$
So $y=c e^{-a x}$. is in the kernel for any c.

[^0]: ${ }^{1}$ Some authors will write $\operatorname{Null}(A)$ with two ells.

