March 4 Math 3260 sec. 55 Spring 2020

Section 4.2: Null & Column Spaces, Linear Transformations

Definition: Let *A* be an $m \times n$ matrix. The **null space** of *A*, denoted¹ by Nul *A*, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\mathsf{Nul}\, A = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}.$$

We can say that Nul *A* is the subset of \mathbb{R}^n that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.

¹Some authors will write Null(*A*) with two ells.

Theorem

For $m \times n$ matrix A, Nul A is a subspace of \mathbb{R}^n .

- Obviously, $A\mathbf{0} = \mathbf{0}$. So **0** is in NulA.
- On the first exam, you showed that linear combinations of solutions to a homogenous equation are also solutions to that homogeneous equation.

So that establishes the necessary three properties for being a subspace. As the next example shows, it is always possible to express Nul*A* as a span.

For a given matrix, a spanning set for NulA gives an *explicit* description of this subspace. Find a spanning set for Nul A where

$$\begin{array}{cccc} \text{If } A\vec{x} = \vec{0} & \text{then} & \vec{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = X_3 \begin{bmatrix} -2 \\ -2 \\ 1 \\ 0 \end{bmatrix} + X_4 \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

So Nul A = Spon
$$\left\{ \begin{bmatrix} -z \\ -z \\ i \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ z \\ 0 \\ 1 \end{bmatrix} \right\}$$

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● 今 Q ○
March 2, 2020 4/19

Column Space

Definition: The **column space** of an $m \times n$ matrix *A*, denoted Col *A*, is the set of all linear combinations of the columns of *A*. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

 $ColA = Span\{a_1, \ldots, a_n\}.$

Note that this corresponds to the set of solutions **b** of linear equations of the form $A\mathbf{x} = \mathbf{b}$! That is

 $\operatorname{Col} A = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$

March 2, 2020 5/19

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Corollary: Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every **b** in \mathbb{R}^m .

イロト イポト イヨト イヨト

Find a matrix A such that W = Col A where

$$W = \left\{ \begin{bmatrix} 6a-b\\a+b\\-7a \end{bmatrix} | a, b \in \mathbb{R} \right\}.$$

be want to express a vector in W as
a product $A \gtrsim$ for some matrix A .
$$\begin{bmatrix} 6a-b\\a+b\\-7a \end{bmatrix} = \begin{bmatrix} 6a\\a\\-7a \end{bmatrix} + \begin{bmatrix} -b\\b\\0 \end{bmatrix}$$
$$= \begin{bmatrix} 6a\\a\\-7a \end{bmatrix} + \begin{bmatrix} -b\\b\\0 \end{bmatrix}$$

7/19

 $= \begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ Taking $A = \begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix}$, W = ColA.

$$A = \left[\begin{array}{rrrrr} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{array} \right]$$

(a) If Col A is a subspace of ℝ^k, what is k?
k = 3 the columns an in TP³
(b) If Nul A is a subspace of ℝ^k, what is k?
A ≠ k=Y A≠ defined requires
3×Y Y×1 ↓ ↓ TP³.

• • • • • • • • • • • •

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

(c) Is **u** in Nul A? Could **u** be in Col A? 0 ന is not in Nul A.

> ≣ ▶ ৰ ≣ ▶ ≣ ৩৭. March 2, 2020 10/19

· • · · · · · · · · · · · · · ·

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(c) Is **v** in Col A? Could **v** be in Nul A? () Is $A\vec{x}=\vec{v}$ consistent? $(A\vec{v}) \rightarrow (1ef_{0} + 0 + 0 + 0) = 0$ () Is $A\vec{x}=\vec{v}$ consistent? $(A\vec{v}) \rightarrow (1ef_{0} + 0 + 0) = 0$ Yes, so Visin ColA. @ At isn't defined since Ais 3x4 and Vir 3x1 I cont be in Nul A

March 2, 2020

11/19

Linear Transformation

Definition: Let *V* and *W* be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector **x** in *V* a unique vector $T(\mathbf{x})$ in *W* such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for every \mathbf{u}, \mathbf{v} in V, and

(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every **u** in *V* and scalar *c*.

イロト イポト イラト イラト

Example: Differentiation

Recall that we defined the set $C^1(\mathbb{R})$ as the set of all real valued functions with domain \mathbb{R} that are one-times continuously differentiable.

A function *f* is in $C^1(\mathbb{R})$ if

- f'(x) exists, and
- f'(x) is continuous on $(-\infty,\infty)$.

Let $C^0(\mathbb{R})$ denote the set of all real valued functions that are continuous on \mathbb{R} .

A function *f* is in $C^0(\mathbb{R})$ if f(x) is continuous on $(-\infty, \infty)$.

Example: Differentiation²

Define the transformation D by

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad D(f) = f'$$

Show that D is a linear transformation. Recall from calculus that $\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$ For f, g in C'(IR) D(f+3) = (f+3)' = f'+3' = D(f) + D(3)Also, $\frac{d}{dx}(cf(x)) = cf'(x)$. $\sum D(cf) = (cf)' = cf' = cD(f)$ Disa linear from formation. ²We can write $D(f(x)) = \frac{df}{dx}$. - 34 March 2, 2020 15/19

Characterize the subset³ of $C^1(\mathbb{R})$ such that D(f) = 0.

³The zero vector in $C^0(\mathbb{R})$ is the function z(x) = 0 for all x.

Range and Kernel

Definition: The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of $V_{.}$)

Definition: The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors **x** in V such that $T(\mathbf{x}) = \mathbf{0}$. (The analog of the null space of a matrix.)

Theorem: Given linear transformation $T: V \longrightarrow W$, the range of T is a subspace of W and the kernel of T is a subspace of V.

> イロト 不得 トイヨト イヨト ヨー ろくの March 2, 2020

17/19

Consider $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x), \quad \alpha \text{ a fixed constant.}$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

y in the Kernel means T(y) = 0If T(y) = 0 then $\frac{db}{dx} + q \cdot y = 0$

Example $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$

$$T(f) = \frac{df}{dx} + \alpha f(x) \quad \alpha \text{ a fixed constant.}$$

(b) Show that for any scalar c, $y = ce^{-\alpha x}$ is in the kernel of T.

We have to show that
$$\frac{dy}{dx} + qy = 0$$

If $y = C e^{-qx}$, then $\frac{dy}{dx} = C e^{-qx} (-q)$
 $= -q C e^{-qx}$

Then
$$\frac{dy}{dx} + ay = -a(\vec{e}^{dx} + a(\vec{c}^{e^{dx}}) = 0)$$

So $y = Ce^{-ax}$ is in the kernel for any C .
March 2.2020 19/19