March 6 MATH 1112 sec. 52 Spring 2020

Definition:

For all real numbers x, the inverse tangent of x is denoted by

$$
\tan ^{-1}(x) \text { or by } \arctan (x)
$$

and is defined by the relationship

$$
y=\tan ^{-1}(x) \Longleftrightarrow x=\tan (y) \quad \text { where }-\frac{\pi}{2}<y<\frac{\pi}{2}
$$

The Domain of the Inverse Tangent is $-\infty<x<\infty$.
The Range of the Inverse is $-\frac{\pi}{2}<y<\frac{\pi}{2}$ (Note the strict inequalities.).
Tangent

Conceptual Definition

We can think of the inverse tangent function in the following way:
$\tan ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x.

Function/Inverse Function Relationship

For all real numbers x

$$
\tan \left(\tan ^{-1}(x)\right)=x
$$

For every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\tan ^{-1}(\tan (x))=x
$$

Remark 1:The expression $\tan ^{-1}(x)$ is always well defined.
Remark 2: If $x>\frac{\pi}{2}$ or $x<-\frac{\pi}{2}$, the expression $\tan ^{-1}(\tan (x))$ MAY BE defined, but IS NOT equal to x.

Examples
Evaluate each expression if possible. If undefined, state a reason.
Note $\tan ^{-1}(\tan x)$ is only x if $-\frac{\pi}{2}<x<\frac{\pi}{2}$.

$$
\begin{aligned}
& \tan ^{-1}\left[\tan \left(-\frac{5 \pi}{6}\right)\right] \\
& =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& =\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
\tan \left(\frac{-5 \pi}{6}\right)= & \pm \tan \left(\frac{\pi}{6}\right) \\
& +q \operatorname{sad} \pi
\end{aligned}
$$

$$
=\frac{1}{\sqrt{3}}
$$

Combining Functions
Evaluate each expression exactly if possible. If it is undefined, provide a reason.

$$
\begin{gathered}
\tan \left[\arcsin \left(\frac{1}{2}\right)\right] \\
\tan \left(\frac{\pi}{6}\right) \\
=\frac{1}{\sqrt{3}}
\end{gathered}
$$

$$
\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

"angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is $\frac{1}{2} "$

Combining Functions
Call $\tan ^{-1}\left(\frac{1}{4}\right)=\theta$

$$
\begin{aligned}
& \sin \left[\tan ^{-1}\left(\frac{1}{4}\right)\right] \\
& =\frac{1}{\sqrt{17}}\left(\frac{\sqrt{17}}{\sqrt{17}}\right) \\
& =\frac{\sqrt{17}}{17}
\end{aligned}
$$

$$
\tan \theta=\frac{1}{4}=\frac{o p p}{a d j}
$$

$$
4^{2}+1^{2}=c^{2}
$$

$16+1=c^{2} \Rightarrow c=\sqrt{17}$

$$
\sin \theta=\frac{1}{\sqrt{17}}
$$

Algebraic Expressions
Write the expression purely algebraically (with no trigonometric functions).

$$
\begin{gathered}
\tan \left[\sin ^{-1}(x)\right]=\frac{x}{\sqrt{1-x^{2}}} \\
\tan \theta=\frac{o p p}{a d j}=\frac{x}{\sqrt{1-x^{2}}} \\
a^{2}+x^{2}=1^{2} \\
a^{2}=1^{2}-x^{2} \\
a=\sqrt{1-x^{2}}
\end{gathered}
$$

$$
\text { Let } \theta=\sin ^{-1} x
$$

$$
\sin \theta=x=\frac{x}{1}
$$

$$
\text { and }-\frac{\pi}{2} \leq 0 \leq \frac{\pi}{2}
$$

Recap: Inverse Sine, Cosine, and Tangent

Function	Domain	Range
$\sin ^{-1}(x)$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos ^{-1}(x)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(x)$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Three Other Inverse Trigonometric Functions

There is disagreement about how to define the ranges of the inverse cotangent, cosecant, and secant functions!

The inverse Cotangent function is typically defined for all real numbers x by

$$
y=\cot ^{-1}(x) \quad \Longleftrightarrow \quad x=\cot (y) \text { for } 0<y<\pi
$$

There is less consensus regarding the inverse secant and cosecant functions.

A Work-Around

Use the fact that $\sec \theta=\frac{1}{\cos \theta}$ to find an expression for $\sec ^{-1}(x)$.
Let $y=\sec ^{-1}(x) \Rightarrow x=\sec y$

$$
\begin{aligned}
\Rightarrow & \frac{1}{x}=\frac{1}{\sec y}=\cos y \\
& \operatorname{Cos}^{-1}\left(\frac{1}{x}\right)=\operatorname{Cos}^{-1}(\operatorname{Cos} y)=y
\end{aligned}
$$

Use your result to compute (an acceptable value for) $\sec ^{-1}(\sqrt{2})$

$$
\operatorname{Sec}^{-1}(\sqrt{2})=\operatorname{Cos}^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}
$$

A Work-Around

We can use the following compromise to compute inverse cotangent, secant, and cosecant values ${ }^{1}$:

For those values of x for which each side of the equation is defined

$$
\begin{aligned}
& \cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right) \\
& \csc ^{-1}(x)=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

${ }^{1}$ Keep in mind that there is disagreement about the ranges!

Question

True/False: Since $\cot \theta=\frac{1}{\tan \theta}$, it must be that $\cot ^{-1} x=\frac{1}{\tan ^{-1} x}$.
(a) True, and I'm confident.
(b) True, but I'm not confident.

(c) False, and I'm confident.
(d) False, but l'm not confident.

