March 6 Math 2306 sec. 60 Spring 2018

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Method of Undetermined Coefficients

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

To find a particular solution y_{p}, we

- classify the function g by its type,
- created an assumed form for the function y_{p} (of corresponding type) with unknown coefficients,
- use substitution into the ODE and matching of like terms to find the coefficients.

We find y_{c} using the characteristic equation (do this first), then our general solution

$$
y=y_{c}+y_{p}
$$

When part of g solves the homogeneous equation...

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

We tried to find y_{p} in the form $y_{p}=A e^{x}$, but the process failed. The solution to the associated homogeneous equation

$$
y_{c}=c_{1}+c_{2} e^{x} .
$$

The problem here is that $A e^{x}$ is the same as $c_{2} e^{x}$. The method can still be used, but the form of the particular solution has to be modified.

We'll consider cases

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply $y_{p_{i}}$ by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Case II Examples
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Constant coed. left, exponential right.
Looking for $y=y c+y p$.
Find $y_{c}: \quad y^{\prime \prime}-2 y^{\prime}+y=0$
Cheractecistic eg $m^{2}-2 m+1=0$

$$
\begin{aligned}
& m^{2}-2 m+1=0 \Rightarrow m=1 \text { repeated } \\
& (m-1)^{2}=0 \Rightarrow m
\end{aligned}
$$

$$
y_{1}=e^{x}, y_{2}=x e^{x}
$$

$$
y_{c}=c_{1} e^{x}+c_{2} x e^{x}
$$

Find $y_{p}: \quad g(x)=-4 e^{x}$
lIst Guess $y_{p}=A e^{x} \quad$ wont work, pat of y_{c}
$a^{n c} \quad y_{p}=\left(A_{e}^{x}\right) x=A_{x} e^{x} \quad$ wont work, pat of y_{c}
$3^{\text {rd }} \quad y_{p}=\left(A x_{e}^{x}\right) x=A x^{2} e^{x} \quad$ This will work.

$$
\begin{aligned}
y_{p}^{\prime} & =A x^{2} e^{x}+2 A x e^{x} \\
y_{p}^{\prime \prime} & =A x^{2} e^{x}+2 A x e^{x}+2 A x e^{x}+2 A e^{x} \\
& =A x^{2} e^{x}+4 A x e^{x}+2 A e^{x} \\
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p} & =-4 e^{x}
\end{aligned}
$$

$$
A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
$$

Collect like terms

$$
x^{2} e^{x}(A-2 A+A)+x e^{x}(4 A-4 A)+2 A e^{x}=-4 e^{x}
$$

$$
\begin{aligned}
2 A e^{x} & =-4 e^{x} \\
A & =-2
\end{aligned}
$$

so $y_{p}=-2 x^{2} e^{x}$

The geneal solution $y=y_{c}+y_{p}$

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

Find the form of the particular soluition

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find $b c: \quad y^{\prime \prime}-4 y^{\prime}+4 y=0$

$$
\begin{aligned}
& m^{2}-4 m+4=0 \\
& (m-2)^{2}=0 \quad m=2 \text { repeated } \\
& y_{1}=e^{2 x}, y_{2}=x e^{2 x}
\end{aligned}
$$

$$
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

To find the for of y_{p}, consida the subproblens

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x) \quad \text { for } y_{p}
$$

and $\quad y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x} \quad$ for $y_{p_{2}}$

$$
\begin{array}{ll}
y_{c}=C e^{2 x}+c_{2} x e^{2 x} \\
g_{1}(x)=\sin (4 x) & y_{p_{1}}=A \sin (4 x)+B \cos (4 x) \quad \text { will work } \\
g_{2}(x)=x e^{2 x} & y_{p_{2}}=(C x+D) e^{2 x}=C x e^{2 x}+D e^{2 x} \quad \text { Not ns Lt } \\
y_{p_{2}}=(C x+D) x e^{2 x}=C x^{2} e^{2 x}+D x e^{2 x} \quad \text { Nope! } \\
y_{p_{2}}=(C x+D) x^{2} e^{2 x}=C x^{3} e^{2 x}+D x^{2} e^{2 x} \quad \text { Yep! } \\
y_{p}=A \sin (4 x)+B \operatorname{Cor}(4 x)+C x^{3} e^{2 x}+D x^{2 x} e^{2 x}
\end{array}
$$

Find the form of the particular solution

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
$$

Find y e:

$$
\begin{aligned}
& \therefore y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0 \quad m^{3}-m^{2}+m-1=0 \\
&(m-1)\left(m^{2}+1\right)=0 \\
& m=1 \text { or } m^{2}+1=0, m^{2}=-1 \\
& m= \pm i \\
& \alpha=0, \beta=1 \\
& y_{1}=e^{x}, y_{2}=e^{0 x} \cos x, y_{3}=e^{0 x} \sin x \quad
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=e^{x}, y_{2}=e^{0 x} \cos x, y_{3}=e^{0 x} \sin x \\
& y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x
\end{aligned}
$$

Tofind ye consider

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x \quad \text { for } y p \text {, }
$$

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=x^{4} \quad \text { for } \quad y_{p} 2
$$

$S_{1}(x)=\cos x, \quad y_{p_{1}}=A \cos x+B \sin x$ wont work

$$
\begin{aligned}
& y_{P_{1}}=(A \operatorname{Cos} x+B \operatorname{Sin} x) x \\
&=A x \operatorname{Cos} x+B x \operatorname{Sin} x \\
& g_{2}(x)=x^{4} \quad y_{P_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G \\
& y_{P}=A x \operatorname{Cos} x+B_{x} \operatorname{Sin} x+C x^{4}+D x^{3}+E x^{2}+F x+G
\end{aligned}
$$

Solve the IVP

$$
y^{\prime \prime}-y=4 e^{-x} \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

we need $y=y_{e}+y_{p}$.
Find $y_{c}: y^{\prime \prime}-y=0 \quad m^{2}-1=0$

$$
\begin{gathered}
(m-1)(m+1)=0 \Rightarrow m=1 \text { or } \\
y_{1}=e^{x}, y_{2}=e^{-x}
\end{gathered}
$$

$$
y_{c}=c_{1} e^{x}+c_{2} e^{-x}
$$

Find $y_{p}: g(x)=4 e^{-x}, y_{p}=\left(A e^{-x}\right) x=A x e^{-x}$

$$
\begin{aligned}
& y_{p}=A x e^{-x} \\
& y_{p}=-A x e^{-x}+A e^{-x} \\
& y_{p}^{\prime \prime}=A x e^{-x}-A e^{-x}-A e^{-x}=A x e^{-x}-2 A e^{-x} \\
& y_{p}^{\prime \prime}-y_{p}=4 e^{-x} \\
& A x e^{-x}-2 A e^{-x}-A x e^{-x}=4 e^{-x} \\
& x e^{-x}(A-A)+e^{-x}(.2 A)=4 e^{-x} \\
& -2 A e^{-x}=4 e^{-x} \\
& \quad A=-2 \\
& y_{p}=-2 x e^{-x} \quad
\end{aligned}
$$

March 2, $2018 \quad 15 / 40$

Gen. Soln. $y=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}$
Apply $y(0)=-1, \quad y^{\prime}(0)=1$

$$
\begin{gathered}
y^{\prime}(x)=c_{1} e^{x}-c_{2} e^{-x}-2 e^{-x}+2 x e^{-x} \\
y(0)=c_{1} e^{0}+c_{2} e^{0}-2 \cdot 0 e^{0}=-1 \\
c_{1}+c_{2}=-1 \\
y^{\prime}(0)=c_{1} e^{0}-c_{2} e^{0}-2 e^{0}+2 \cdot 0 e^{0}=1 \\
c_{1}-c_{2}-2=1 \\
c_{1}-c_{2}=3
\end{gathered}
$$

$$
\begin{aligned}
c_{1}+c_{2} & =-1 \\
c_{1}-c_{2} & =3 \\
2 c_{1} & =2 \Rightarrow c_{1}=1 \quad, c_{2}=-2
\end{aligned}
$$

The solution to the IVP is

$$
y=e^{x}-2 e^{-x}-2 x e^{-x}
$$

