March 6 Math 3260 sec. 51 Spring 2020

Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors {vy,...,Vp} in a vector space V is said to
be linearly independent if the equation

C1V1 + CoVo + -+ CpVp =0 (1)
has only the trivial solutions ¢y = ¢, = --- = ¢, = 0.

The set is linearly dependent if there exist a nontrivial solution (at
least one of the weights c; is nonzero). If there is a nontrivial solution
c1,...,Cp, then equation (1) is called a linear dependence relation.

Theorem: The set {v¢,...,Vp}, p>2and vy # 0, is linearly
dependent if and only if some v; for j > 1 is a linear combination of the
preceding vectors vy, ..., V;_1.
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Example

Determine if the set is linearly dependent or independent in Ps.

(a) {p1,p2,P3} Where py =1, p2 = 2t, p3 =t — 3.
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(b) {p17p25 p3} Where p1 = 2, p2 — t, p3 — _t2
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Example

Show that every vector p = po + p1t + pot2 in P, can be written as a
linear combination of {p1, P2, ps}! where p1 =2, po =t, ps = — 2.
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'i.e. this set spans P2
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Definition (Basis)

Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {by,...,bp} in V is a basis of H provided

(i) Bis linearly independent, and
(i) H =Span(B).

We can think of a basis as a minimal spanning set. All of the

information needed to construct vectors in H is contained in the basis,
and none of this information is repeated.
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