March 6 Math 3260 sec. 55 Spring 2018

Section 4.1: Vector Spaces and Subspaces

Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms: For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $\mathbf{1 u}=\mathbf{u}$

Examples of Vector Spaces

For an integer $n \geq 0, \mathbb{P}_{n}$ denotes the set of all polynomials with real coefficients of degree at most n. That is

$$
\mathbb{P}_{n}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \mid p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{R}\right\}
$$

where addition ${ }^{1}$ and scalar multiplication are defined by

$$
\begin{gathered}
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\cdots+\left(p_{n}+q_{n}\right) t^{n} \\
(c \mathbf{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+\cdots+c p_{n} t^{n}
\end{gathered}
$$

$$
{ }^{1} \mathbf{q}(t)=q_{0}+q_{1} t+\cdots+q_{n} t^{n}
$$

\mathbb{P}_{1}
Verify that \mathbb{P}_{1} is closed under vector addition and scalar multiplication.
A vecter in \mathbb{P}_{1} looker like $\vec{p}(t)=p_{0}+p_{1} t, \rho_{0}, p_{1}$ in \mathbb{R}.
If \vec{p}, \vec{q} are in \mathbb{P}_{1} then $\vec{p}(t)=p_{0}+p_{1} t, \vec{q}(t)=q_{0}+q_{1} t$

$$
\left(\vec{p}+\vec{q}_{q}\right)(t)=\vec{p}(t)+\vec{q}(t)=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t
$$

a polynomial ot degree at most 1 so it's in \mathbb{P}_{1}.

For scaler c,

$$
(\overrightarrow{c p})(t)=\overrightarrow{c p}(t)=c p_{0}+c p_{1} t
$$

a polynomid of degree at most 1 so it's in \mathbb{P}_{1}
\mathbb{P}_{1} is closes under vector addition and Scaler multiplication as the operations are defined.

Examples of Vector Spaces

Let V be the set of all differentiable, real valued functions $f(x)$ defined for $-\infty<x<\infty$ with the property that

$$
f(0)=0
$$

Define vector addition and scalar multiplication in the standard way for functions-i.e.

$$
(f+g)(x)=f(x)+g(x), \quad \text { and } \quad(c f)(x)=c f(x)
$$

Example
Verify that properties 1 . and 6 . hold.
suppose f and g are in V. Then fond g are differentiable on $(-\infty, \infty)$ and $f(0)=0$ and $g(0)=0$.

$$
(f+g)(x)=f(x)+g(x)
$$

This is differentiable with domain $(-\infty, \infty)$.
And

$$
(f+g)(0)=f(0)+g(0)=0+0=0
$$

Hence $f+g$ is in V which is closed under
addition.

For scalar C

$$
(c f)(x)=c f(x) .
$$

This is differentiable with domain ($-\infty, \infty$).
Also

$$
(c f)(0)=c f(0)=c \cdot 0=0
$$

So $c f$ is in V which is closed under Scaler multip lication.

A set that is not a Vector Space
Let $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], \mid x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(1) Does property 1. hold for V ?

Let $\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\left[\begin{array}{l}u \\ v\end{array}\right]$ be in V so $x \leq 0, y \leq 0, u \leq 0$ and $V \leq 0$.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
x+u \\
y+v
\end{array}\right] \quad \begin{gathered}
u+x \leq 0 \\
\text { and } \\
y+v \leq 0
\end{gathered}
$$

The sum is in V. V is closed undo vector addition.

A set that is not a Vector Space
Let $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], \mid x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(2) Does property 6. hold for V ?

Let $\left[\begin{array}{l}x \\ y\end{array}\right]$ b in V so $x \leq 0$ and $y \leq 0$
Is it necessary that $c\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}c x \\ c_{y}\end{array}\right]$ will satisfy $c x \leq 0, c y \leq 0$?
Note $\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ is in V but
No
$-2\left[\begin{array}{c}-1 \\ -1\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ is not in V. V is not closed under Scalar multiplication.

Theorem

Let V be a vector space. For each \mathbf{u} in V and scalar c

$$
\begin{aligned}
0 \mathbf{u} & =0 \\
c \mathbf{0} & =0 \\
-1 \mathbf{u} & =-\mathbf{u}
\end{aligned}
$$

Subspaces

Definition: A subspace of a vector space V is a subset H of V for which
a) The zero vector is in H^{2}
b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u}+\mathbf{v}$ is in H)
c) H is closed under scalar multiplication. (i.e. \mathbf{u} in H implies $c \mathbf{u}$ is in H)
${ }^{2}$ This is sometimes replaced with the condition that H is nonempty.

Example
Consider \mathbb{R}^{n} and let $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a nonempty $(p \geq 1)$ subset of \mathbb{R}^{n}. Show that V is a subspace.
we need to show that V satisfies the 3 conditions of a subspace.
(1) Note $\vec{O}=O \vec{V}_{1}+O \vec{V}_{2}+\ldots+O \vec{v}_{p}$ i ie \vec{O} is in $\operatorname{spin}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$. $\stackrel{O}{0}$ is in V.
(2) If \vec{x}, \vec{u} are in V then

$$
\begin{aligned}
& \vec{X}=C_{1} \vec{V}_{1}+C_{2} \vec{V}_{2}+\ldots+C_{p} \vec{V}_{p} \quad \text { and } \\
& \vec{u}=a_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+\ldots+a_{p} \vec{V}_{p} \text { for som }
\end{aligned}
$$

scalars c_{1}, \ldots, c_{p} and a_{1}, \ldots, a_{p}.

$$
\vec{x}+\vec{u}=\left(c_{1}+a_{1}\right) \vec{v}_{1}+\left(c_{2}+a_{2}\right) \vec{v}_{2}+\cdots+\left(c_{p}+a_{p}\right) \vec{v}_{p}
$$

Hence $\vec{x}+\vec{h}$ is in V which is closed under vector addition.
(3) For scoler k

$$
k \vec{x}=k c_{1} \vec{v}_{1}+k c_{2} \vec{v}_{2}+\ldots+k c_{p} \vec{v}_{p}
$$

Hence $k \vec{x}$ is in V which is closed under scaler multiplication.
V is a subspace of \mathbb{R}^{n}.

Example
Determine which of the following is a subspace of \mathbb{R}^{2}.
(a) The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 0\right)$.
(1) Note $\overrightarrow{0}=(0,0)$ has the right form, it's in this set.
(2) If $\vec{u}=(u, 0)$ and $\vec{v}=(v, 0)$, then
$\vec{u}+\vec{v}=\left(u_{1}+v_{1}, 0+0\right)=\left(u_{1}+v_{1}, 0\right)$ has the right
form. This set is closed undo vector addition.
(3) For scaler $c, \quad \vec{u}=\left(c u_{1}, c \cdot 0\right)=\left(c u_{1}, 0\right)$

The sutis (lased under scalar multiplication
The set is a subspace of \mathbb{R}^{2}.

Example continued
(b) The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 1\right)$.

This is not a subspace of \mathbb{R}^{2}. In fact, \vec{O} is not in this set.

Definition: Linear Combination and Span

Definition Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ be a collection of vectors in V. A linear combination of the vectors is a vector \mathbf{u}

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{p}$.

Definition The span, $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is the subet of V consisting of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$.

Theorem

Theorem: If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$, for $p \geq 1$, are vectors in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is a subspace of V.

Remark This is called the subspace of V spanned by (or generated by) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Moreover, if H is any subspace of V, a spanning set for H is any set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ such that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Example
$M^{2 \times 2}$ denotes the set of all 2×2 matrices with real entries. Consider the subset H of $M^{2 \times 2}$

$$
H=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

Show that H is a subspace of $M^{2 \times 2}$ by finding a spanning set. That is, show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for some appropriate vectors.

Tale $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ in H, note

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

linear combination of constant vectors

Let $\vec{V}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\vec{V}_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

$$
H=\operatorname{spm}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} .
$$

