March 6 Math 3260 sec. 55 Spring 2018

Section 4.1: Vector Spaces and Subspaces

Definition A **vector space** is a nonempty set *V* of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms: For all \mathbf{u} , \mathbf{v} , and \mathbf{w} in *V*, and for any scalars *c* and *d*

- 1. The sum $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
- $2. \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

- 4. There exists a **zero** vector **0** in *V* such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar c, $c\mathbf{u}$ is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.

9.
$$c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$$
.

10. 1**u** = **u**

Examples of Vector Spaces

For an integer $n \ge 0$, \mathbb{P}_n denotes the set of all polynomials with real coefficients of degree at most n. That is

$$\mathbb{P}_n = \{\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \dots + \mathbf{p}_n t^n \mid \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{R}\},\$$

where addition¹ and scalar multiplication are defined by

$$(\mathbf{p}+\mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t) = (p_0 + q_0) + (p_1 + q_1)t + \dots + (p_n + q_n)t^n$$

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + \cdots + cp_nt^n.$$

 ${}^{1}\mathbf{q}(t) = q_0 + q_1t + \cdots + q_nt^n$

March 2, 2018 2 / 38

4 D N 4 B N 4 B N 4 B

 \mathbb{P}_1 Verify that \mathbb{P}_1 is closed under vector addition and scalar multiplication. A vector in P, loder like p(t)= potpit, po, p, in TR. If p, & are in IP, then p(t)= porpit, g(t)= gorgit $(\vec{p}+\vec{q})(t) = \vec{p}(t) + \vec{q}(t) = (p_0+q_0) + (p_1+q_1)t$ a polynomial of degree at most 1 so it's in P. For scalar C, $(c_{p})(t_{1} = c_{p}(t) = c_{p} + c_{p}, t$ a polynomial of degree at most I so it's in IP,

P, is closed inder vector addition and Scaler multiplication as the operations are defined.

Examples of Vector Spaces

Let *V* be the set of all differentiable, real valued functions f(x) defined for $-\infty < x < \infty$ with the property that

f(0) = 0.

Define vector addition and scalar multiplication in the standard way for functions—i.e.

(f+g)(x) = f(x) + g(x), and (cf)(x) = cf(x).

March 2, 2018 5 / 38

Verify that properties 1. and 6. hold.

Suppose
$$f$$
 and g are in V . Then f and g
are differentiable on $(-\infty, \infty)$ and $f(0)=0$ and
 $g(0)=0$.
 $(f+g)(x) = f(x) + g(x)$.
This is differentiable with domain $(-\infty, \infty)$.
And $(f+g)(0) = f(0) + g(0) = 0 + 0 = 0$.
Nance $f + g$ is in V which is closed under

March 2, 2018 6 / 38

addition.

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(1) Does property 1. hold for V? Let $\begin{bmatrix} x \\ 5 \end{bmatrix}$ and $\begin{bmatrix} b \\ v \end{bmatrix}$ be in V so $x \le 0, y \le 0, u \le 0$ and $V \le 0$. $\begin{bmatrix} x \\ 5 \end{bmatrix} + \begin{bmatrix} b \\ v \end{bmatrix} = \begin{bmatrix} x+b \\ y+v \end{bmatrix}$ $b+x \le 0$ ad $y+v \le 0$ The sum is in V. Vis closed under vector addition.

March 2, 2018 8 / 38

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(2) Does property 6. hold for V?

Let
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 be in V so $x \le 0$ and $y \le 0$
Is it necessary that $c \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ will set sfy
 $cx \ge 0, cy \le 0$?
Note $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is in V but No
 $-2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is not in V . V is not closed under
Scalar multiplication.

March 2, 2018 9 / 38

Let V be a vector space. For each **u** in V and scalar c

$$0u = 0$$

 $c0 = 0$
 $-1u = -u$

2

イロト イヨト イヨト イヨト

Definition: A **subspace** of a vector space V is a subset H of V for which

- a) The zero vector is in H^2
- b) *H* is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in *H* implies $\mathbf{u} + \mathbf{v}$ is in *H*)
- c) *H* is closed under scalar multiplication. (i.e. **u** in *H* implies *c***u** is in *H*)

²This is sometimes replaced with the condition that *H* is nonempty. A = A = A

Consider \mathbb{R}^n and let $V = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a nonempty $(p \ge 1)$ subset of \mathbb{R}^n . Show that *V* is a subspace.

We need to show that V satisfies the 3 conditions of a subspace. ie Öisin spritvi,, Vet $\bigcirc Note \quad O = OV_1 + OV_2 + ... + OV_p$ Dis int. @ If X, i are in V then $\vec{X} = C_1 \vec{V}_1 + C_2 \vec{V}_2 + \dots + C_p \vec{V}_p$ and $\vec{L} = Q_1 \vec{V}_1 + Q_2 \vec{V}_2 + \dots + Q_p \vec{V}_p$

March 2, 2018 13/38

Determine which of the following is a subspace of \mathbb{R}^2 .

(a) The set of all vectors of the form $\mathbf{u} = (u_1, 0)$.

O Note O= (0,0) has the right form, it's in this set. (2) If L = (u, 0) and V = (v, 0), then $\vec{u} + \vec{v} = (u_1 + v_1, 0 + 0) = (u_1 + v_1, 0)$ has the right form This set is closed under vector addition. (3) For scalar C, cu= (Cu, (·0)= (Cu, 0) The set is closed under Scalar multiplication The set is a subspace of R2.

Example continued

(b) The set of all vectors of the form $\mathbf{u} = (u_1, 1)$.

Definition: Linear Combination and Span

Definition Let *V* be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be a collection of vectors in *V*. A **linear combination** of the vectors is a vector \mathbf{u}

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p$$

for some scalars c_1, c_2, \ldots, c_p .

Definition The **span**, Span{ $v_1, v_2, ..., v_p$ }, is the subet of *V* consisting of all linear combinations of the vectors $v_1, v_2, ..., v_p$.

March 2, 2018

16/38

Theorem

Theorem: If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, for $p \ge 1$, are vectors in a vector space V, then $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$, is a subspace of V.

Remark This is called the **subspace of** *V* **spanned by (or generated by)** $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$. Moreover, if *H* is any subspace of *V*, a **spanning set** for *H* is any set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ such that $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$.

 $M^{2\times 2}$ denotes the set of all 2 \times 2 matrices with real entries. Consider the subset H of $M^{2\times 2}$

$${\mathcal H}=\left\{\left[egin{array}{cc} {a } & 0 \ 0 & {b} \end{array}
ight] \mid {a}, \, {b} \in {\mathbb R}
ight\}.$$

Show that *H* is a subspace of $M^{2\times 2}$ by finding a spanning set. That is, show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ for some appropriate vectors.

Take
$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
 in H, note
 $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
linear combination of
constant vertor

March 2, 2018 18 / 38

A D N A D N A D N A D N

$$\begin{aligned} \mathbf{L} \mathbf{F} & \vec{\mathbf{V}}_{1} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} & \mathbf{n} \mathbf{d} & \vec{\mathbf{V}}_{2} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \\ \mathbf{H} = \mathbf{Spm} \left\{ \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \right\}. \end{aligned}$$