March 6 Math 3260 sec. 55 Spring 2020

Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in a vector space *V* is said to be **linearly independent** if the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

March 4, 2020

1/22

has only the trivial solutions $c_1 = c_2 = \cdots = c_p = 0$.

The set is **linearly dependent** if there exist a nontrivial solution (at least one of the weights c_i is nonzero). If there is a nontrivial solution c_1, \ldots, c_p , then equation (1) is called a **linear dependence relation**.

Theorem: The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, $p \ge 2$ and $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j for j > 1 is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Example

Determine if the set is linearly dependent or independent in \mathbb{P}_2 .

(a) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 1$, $\mathbf{p}_2 = 2t$, $\mathbf{p}_3 = t - 3$.

 $\vec{p}_3 = \vec{k} - \vec{3} = \pm \vec{p}_2 - \vec{3}\vec{p}_1$ $\Rightarrow \pm \vec{p}_2 - \vec{3}\vec{p}_1 - \vec{p}_3 = \vec{0}$ $-\vec{3}\vec{p}_1 + \pm \vec{p}_2 - \vec{p}_3 = \vec{0}$ This is a linear dependence relation,

the set is linearly dependent.

(b) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 2$, $\mathbf{p}_2 = t$, $\mathbf{p}_3 = -t^2$.

Consider the equation $C_1\vec{p}_1 + C_2\vec{p}_2 + C_3\vec{p}_3 = \vec{O}$ $QC_1 + C_2 t - C_3 t^2 = 0 + 0t + 0t^2$ This is supposed to hold for all real numbers t When t=0, the equation becomes $2C_1 + C_2(0) - C_3(0^2) = 0 + 0 + 0 = 0$ 26,=0 $C_1 = O$ March 4, 2020

3/22

When t=1. the equation becomes $C_{2}(1) - C_{3}(1^{2}) = 0 \implies C_{2} - C_{3} = 0$ $C_2 = C_3$ When E= -1, we set $C_{2}(-1) - C_{3}(-1)^{2} = 0 \Rightarrow -C_{2} - C_{3} = 0$ $C_z = -C_r$

 $C_3 = -C_3 \Rightarrow C_3 = 0$ ss $C_2 = 0$

The only solution is C = C = C = 0. The set is linearly independent.

March 4, 2020 4/22

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Example

Show that every vector $\mathbf{p} = p_0 + p_1 t + p_2 t^2$ in \mathbb{P}_2 can be written as a linear combination of $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}^1$ where $\mathbf{p}_1 = 2$, $\mathbf{p}_2 = t$, $\mathbf{p}_3 = -t^2$.

We want
$$\vec{p} = c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3$$

 $p_0 + p_1 t_1 + p_2 t_2^2 = 2.c_1 + c_2 t_1 - c_3 t_2^2$
This holds if $c_1 = \pm p_0$, $c_2^2 p_1$, and $c_3 = -p_2$
 $c_1 \vec{p}_1 + c_2 \vec{p}_1 + c_3 \vec{p}_3 = 2(\pm p_0) + p_1 t_1 - (-p_2) t_2^2$
 $= p_0 + p_1 t_1 + p_2 t_2^2$

¹i.e. this set *spans* \mathbb{P}_2

March 4, 2020 5/22

Definition (Basis)

Definition: Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_p}$ in *V* is a **basis** of *H* provided

- (i) \mathcal{B} is linearly independent, and
- (ii) $H = \text{Span}(\mathcal{B})$.

We can think of a basis as a *minimal spanning set*. All of the *information* needed to construct vectors in *H* is contained in the basis, and none of this information is repeated.

Example

If *A* is an invertible $n \times n$ matrix, then we know² that (1) the columns are linearly independent, and (2) the columns span \mathbb{R}^n . Use this to determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 where

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\0\\-6 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -4\\1\\7 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} -2\\1\\5 \end{bmatrix}.$$

We can create a matrix $A = \begin{bmatrix} \overline{v}, \ \overline{v}_{2} \ \overline{v}_{3} \end{bmatrix}.$
If A is invertible, the set is a basis, otherwise it's not.

² from our large theorem on invertible matrices from section 2_33 , $4 \equiv 3$, $4 \equiv 3$, $3 \equiv 3$, 3

A is invertible if met A = I $\begin{bmatrix} 3 & -4 & -3 \\ 0 & 1 & 1 \\ -6 & 7 & 5 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Y_{es} , A^{-1} exists so $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for R³.

March 4, 2020 9/22

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Standard Basis in \mathbb{R}^n

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^n . This is called the **standard basis** for \mathbb{R}^n . For example, the standard bases in \mathbb{R}^2 and \mathbb{R}^3 are

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \text{ and } \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ respectively.}$$

4 (1) × 4 (2) × 4 (2) × 4 (2) ×