March 6 Math 3260 sec. 56 Spring 2018

Section 4.1: Vector Spaces and Subspaces

Definition A vector space is a nonempty set V of objects called
vectors together with two operations called vector addition and scalar
multiplication that satisfy the following ten axioms: For all u, v, and w in
V, and for any scalars ¢ and d

The sumu+vofuandvisin V.

ut+v=v+u.

(U+Vv)+w=u+(Vv+w).

There exists a zero vector 0 in V such thatu + 0 = u.

For each vector u there exists a vector —u such that u + (—u) = 0.
For each scalar ¢, cuisin V.

c(u+v)=-cu-+ecv.

(c+d)u=cu+du.

c(du) = d(cu) = (cd)u.

0. lu=u
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Examples of Vector Spaces

For an integer n > 0, P, denotes the set of all polynomials with real
coefficients of degree at most n. That is

Pp = {p(t) = po +p1t+---+pnt" | Po,p1,...,Pn € R},

where addition' and scalar multiplication are defined by
(p+a)(t) =p(t) +4(t) = (Po + o) + (P1 + 1)t + -+ + (Pn + gn) 1",

(cp)(t) = cp(t) = cpp + cpit + - - - + cpnt”.

'q(t) = qo+ qit+ -+ + gt”
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Example
We found that in P, the zero vector 0(t) =0 + 0t + - - - + 0¢".

If p(t) = po + p1t+ - - - + pnt", what is the vector —p?
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Examples of Vector Spaces

Let V be the set of all differentiable, real valued functions f(x) defined
for —oo < x < oo with the property that

£(0) = 0.

Define vector addition and scalar multiplication in the standard way for
functions—i.e.

(f+9)(x) =f(x)+9g(x), and (cf)(x)= cf(x).
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Example

Verify that properties 1. and 6. hold.
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A set that is not a Vector Space
Let V = { [ ; ] , [ x<0,y< 0} with regular vector addition and

scalar multiplication in R?. Note V is the third quadrant in the xy-plane.

(1) Does property 1. hold for V?
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A set that is not a Vector Space
Let V = { [ ; ] , [ x<0,y< 0} with regular vector addition and

scalar multiplication in R?. Note V is the third quadrant in the xy-plane.

(2) Does property 6. hold for V?
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Theorem

Let V be a vector space. For each u in V and scalar ¢

Ou = 0
c0 = 0
—1u = —u
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Subspaces

Definition: A subspace of a vector space V is a subset H of V for
which

a) The zero vector is in H?

b) H is closed under vector addition. (i.e. u,vin H implies u + v is in
H)

c) His closed under scalar multiplication. (i.e. uin H implies cu is in
H)

2This is sometimes replaced with the condition that H is nonempty.
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Example

Consider R" and let V =Span{vy,Vvz,...,V,} be a nonempty (p > 1)
subset of R . Show that V is a subspace.
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Example
Determine which of the following is a subspace of R2.

(a) The set of all vectors of the form u = (uy, 0).
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Example continued

(b) The set of all vectors of the form u = (uy, 1).
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Definition: Linear Combination and Span

Definition Let V be a vector space and v¢, va, ..., V, be a collection of
vectors in V. A linear combination of the vectors is a vector u

U=CiVy + CoVo + -+ CpVp

for some scalars ¢y, ¢, . . ., Cp.

Definition The span, Span{vy,Vz,...,Vp}, is the subet of V
consisting of all linear combinations of the vectors v¢, Vo, ..., Vp.
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Theorem

Theorem: If v{, vo, ..., vy, for p > 1, are vectors in a vector space V,
then Span{vy,Vs,...,V,}, is a subspace of V.

Remark This is called the subspace of V spanned by (or generated
by) {vi,...,Vvp}. Moreover, if H is any subspace of V, a spanning set
for H is any set of vectors {vy,...,Vp} such that H =Span{vy,...,vp}.
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Example

M?2%2 denotes the set of all 2 x 2 matrices with real entries. Consider
the subset H of M2*2

H:{[g 2] \a,beR}.

Show that H is a subspace of M?*2 by finding a spanning set. That is,
show that H =Span{vy, vo} for some appropriate vectors.
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