March 6 Math 3260 sec. 56 Spring 2018

Section 4.1: Vector Spaces and Subspaces

Definition A **vector space** is a nonempty set *V* of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms: For all \mathbf{u} , \mathbf{v} , and \mathbf{w} in *V*, and for any scalars *c* and *d*

- 1. The sum $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
- $2. \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

- 4. There exists a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

March 2, 2018

1/37

- 6. For each scalar c, $c\mathbf{u}$ is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.

9.
$$c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$$
.

10. 1**u** = **u**

Examples of Vector Spaces

For an integer $n \ge 0$, \mathbb{P}_n denotes the set of all polynomials with real coefficients of degree at most *n*. That is

$$\mathbb{P}_n = \{\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \dots + \mathbf{p}_n t^n \mid \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{R}\},\$$

where addition¹ and scalar multiplication are defined by

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t) = (p_0 + q_0) + (p_1 + q_1)t + \dots + (p_n + q_n)t^n$$

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + \cdots + cp_nt^n.$$

 ${}^{1}\mathbf{q}(t) = q_0 + q_1t + \cdots + q_nt^n$

March 2, 2018 2 / 37

4 D N 4 B N 4 B N 4 B

We found that in \mathbb{P}_n , the zero vector $\mathbf{0}(t) = \mathbf{0} + \mathbf{0}t + \cdots + \mathbf{0}t^n$.

If $\mathbf{p}(t) = p_0 + p_1 t + \cdots + p_n t^n$, what is the vector $-\mathbf{p}$?

$$f_{or} = -\vec{p}(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n}$$

$$(\vec{p} + (-\vec{p}))(t) = \vec{p}(t) + (-\vec{p}(t))$$

$$= (p_{0} + a_{0}) + (p_{1} + a_{1})t + \dots + (p_{n} + a_{n})t^{n}$$

$$= 0 + 0t + \dots + 0t^{n}$$

$$a_{0} = -P_{0}, \quad a_{1} = -P_{1}, \dots, \quad a_{n} = -P_{n}$$

$$s_{0} = -\vec{p}(t) = -p_{0} - p_{1}t - \dots - p_{n}t^{n}$$

イロト イポト イヨト イヨト

Examples of Vector Spaces

Let *V* be the set of all differentiable, real valued functions f(x) defined for $-\infty < x < \infty$ with the property that

f(0) = 0.

Define vector addition and scalar multiplication in the standard way for functions—i.e.

(f+g)(x) = f(x) + g(x), and (cf)(x) = cf(x).

March 2, 2018 4 / 37

Verify that properties 1. and 6. hold.

イロト イヨト イヨト イヨト

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(1) Does property 1. hold for V? Let [x] and [4] bein V so x so, y so, uso, and vso. $\begin{bmatrix} x \\ y \end{bmatrix}_{+} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} x+u \\ y+v \end{bmatrix}$ Note $x \le 0 \mod u \le 0$ $\Rightarrow x+u \le 0$ similarly y+v 50. The sum is in V Vis closed under vector addition.

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(2) Does property 6. hold for V? If [x] is in V and say X<0, then note that $-2 \begin{bmatrix} x \\ b \end{bmatrix} = \begin{bmatrix} -2x \\ -zb \end{bmatrix}$ is not in V since $-2x \ge 0$. For example, $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ is in V, but $-2 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is not in V. V is not closed under Scalar nultiplicator. V is not a Vector space. March 2, 2018 8/37

Let V be a vector space. For each **u** in V and scalar c

$$0u = 0$$

 $c0 = 0$
 $-1u = -u$

Definition: A **subspace** of a vector space V is a subset H of V for which

- a) The zero vector is in H^2
- b) *H* is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in *H* implies $\mathbf{u} + \mathbf{v}$ is in *H*)
- c) *H* is closed under scalar multiplication. (i.e. **u** in *H* implies *c***u** is in *H*)

²This is sometimes replaced with the condition that *H* is nonempty.

Consider \mathbb{R}^n and let $V = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a nonempty $(p \ge 1)$ subset of \mathbb{R}^n . Show that *V* is a subspace.

Well show that V satisfies the 3 properties.

$$O = Ov_1 + Ov_2 + \dots + Ov_p$$
, O is in V .

(2) Suppose
$$\vec{X}$$
, \vec{u} are in \vec{V} .
 $\vec{X} = G$, $\vec{v}_1 + G_2 \vec{v}_2 + \dots + G_p \vec{V}_p$ and
 $\vec{u} = b_1 \vec{v}_1 + b_2 \vec{v}_2 + \dots + b_p \vec{v}_p$ for some scalars
 $G_1, \dots, G_p, b_1, \dots, b_p$.
 $\vec{X} + \vec{u} = (G_1 + b_1) \vec{v}_1 + (G_2 + b_2) \vec{V}_2 + \dots + (G_p + b_p) \vec{V}_p$
March 2, 2018 11/37

March 2, 2018 12 / 37

・ロト・西ト・ヨト・ヨー うへの

Determine which of the following is a subspace of \mathbb{R}^2 .

(a) The set of all vectors of the form $\mathbf{u} = (u_1, 0)$. $\mathbf{O} = (\mathbf{o}, \mathbf{b})$ is in this set.

(a) If $\vec{h}_{1} = (h_{1,0}) \wedge d$ $\vec{V} = (V_{1,0})$, $\vec{h}_{1} + \vec{V} = (h_{1,1} + V_{1,0} + 0) = (h_{1,1} + V_{1,0})$ The set if (losed under vector edd) tion.

3 ch = (ch, co) = (ch, o) The set is closed inder scalar multiplication. The set is a subspace of R².

Example continued

(b) The set of all vectors of the form $\mathbf{u} = (u_1, 1)$.

Not a subspace. In patienter O is not in this at.

Definition: Linear Combination and Span

Definition Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be a collection of vectors in V. A linear combination of the vectors is a vector **u**

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p$$

for some scalars c_1, c_2, \ldots, c_p .

Definition The span, Span{ v_1, v_2, \ldots, v_p }, is the subet of V consisting of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.

> March 2, 2018

15/37

Theorem

Theorem: If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, for $p \ge 1$, are vectors in a vector space *V*, then Span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ }, is a subspace of *V*.

Remark This is called the **subspace of** *V* **spanned by (or generated by)** $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$. Moreover, if *H* is any subspace of *V*, a **spanning set** for *H* is any set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ such that $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$.

 $M^{2\times 2}$ denotes the set of all 2 × 2 matrices with real entries. Consider the subset *H* of $M^{2\times 2}$

$${\mathcal H}=\left\{\left[egin{array}{cc} {m a} & {m 0} \ {m 0} & {m b} \end{array}
ight] \mid {m a},\, {m b}\in {\mathbb R}
ight\}.$$

Show that *H* is a subspace of $M^{2\times 2}$ by finding a spanning set. That is, show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ for some appropriate vectors.

イロト イポト イラト イラト

・ロト・西ト・ヨト・ヨー うへの