March 7 Math 1190 sec. 62 Spring 2017

Section 3.3: Derivatives of Logarithmic Functions

Recall: If $a>0$ and $a \neq 1$, we denote the base a logarithm of x by

$$
\log _{a} x
$$

This is the inverse function of the (one to one) function $y=a^{x}$. So we can define $\log _{a} x$ by the statement

$$
y=\log _{a} x \quad \text { if and only if } \quad x=a^{y} .
$$

Properties of Logarithms

Additional properties that we need to know:

- $f(x)=\log _{a}(x)$, has domain $(0, \infty)$ and range $(-\infty, \infty)$.
- For $a>1$, *

$$
\lim _{x \rightarrow 0^{+}} \log _{a}(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a}(x)=\infty
$$

- In particular

$$
\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \ln (x)=\infty
$$

Note that for $0<a<1$ we can use the fact that

$$
\log _{\frac{1}{b}}(x)=-\log _{b}(x)
$$

Graphs of Logarithms:Logarithms are differentiable on

 $(0, \infty)$.

Figure: Plots of functions of the type $f(x)=\log _{a}(x)$. The value of $a>1$ on the left, and $0<a<1$ on the right.

The Derivative of $y=\log _{a}(x)$
To find a derivative rule for $y=\log _{a}(x)$, we use the chain rule.
Let $y=\log _{a}(x)$, then $x=a^{y}$.
Using implicit diff:

$$
\begin{aligned}
\frac{d}{d x} x & =\frac{d}{d x} a^{y} \\
1 & =a^{y}(\ln a) \frac{d y}{d x}
\end{aligned}
$$

this is were
|solate $\frac{d y}{d x}: \quad \frac{d y}{d x}=\frac{1}{a^{y} \ln a}$ but $a^{y}=x$ whet after

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{x \ln a}
$$

New rule:

$$
\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln a}
$$

$$
\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
$$

Examples: Evaluate each derivative.
(a) $\frac{d}{d x} \log _{3}(x)=\frac{1}{x \ln 3}$ here $a=3$
(b) $\frac{d}{d \theta} \log _{\frac{1}{2}}(\theta)=\frac{1}{\theta \ln \frac{1}{2}}$ here $a=\frac{1}{2}$

Question

True or False The derivative of the natural log

$$
\begin{gathered}
\frac{d}{d x} \ln (x)=\frac{1}{x} \\
\text { Since } \ln e=1, \frac{1}{x \ln e}=\frac{1}{x}
\end{gathered}
$$

The function $\ln |x|$
Show that if $x<0$, then

$$
\frac{d}{d x} \ln (-x)=\frac{1}{x}
$$

If $x<0$ then $-x>0$.
Chain rule: inside $u=-x=-1 \cdot x, \quad u^{\prime}=-1$
outside $f(u)=\ln u \quad, f^{\prime}(u)=\frac{1}{u}$

$$
\frac{d}{d x} \ln (-x)=\frac{1}{(-x)} \cdot(-1)=\frac{-1}{-x}=\frac{1}{x}
$$

The Derivative of $\ln |x|$

$$
\frac{d}{d x} \ln |x|=\frac{1}{x}
$$

Our generd formula for the derivative.

Differentiating Functions Involving Logs

We can combine our new rule with our existing derivative rules.

Chain Rule: Let u be a differentiable function. Then

$$
\frac{d}{d x} \log _{a}|u|=\frac{1}{u \ln (a)} \frac{d u}{d x}=\frac{u^{\prime}(x)}{u(x) \ln (a)}
$$

In particular

$$
\frac{d}{d x} \ln |u|=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}(x)}{u(x)}
$$

Examples
Evaluate each derivative.
(a) $\frac{d}{d x} \ln |\sec x|=\frac{\sec x \tan x}{\sec x}=\tan x$
(b) $\frac{d}{d t} t^{2} \log _{3}(4 t)=2 t \log _{3}(4 t)+t^{2}\left(\frac{1}{4 t \ln 3} \cdot 4\right)$
product

$$
\text { and }=2 t \log _{3}(4 t)+\frac{t}{\ln 3}
$$

chain rule

Question

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

Find y^{\prime} if $y=x(\ln x)^{2}$.
(a) $y^{\prime}=\frac{2 \ln x}{x}$

$$
\frac{d y}{d x}=1 \cdot(\ln x)^{2}+x\left(2(\ln x) \cdot \frac{1}{x}\right)
$$

(b) $y^{\prime}=2 \ln x+2$

$$
=(\ln x)^{2}+2 \ln x
$$

((C)) $y^{\prime}=(\ln x)^{2}+2 \ln x$
(d) $y^{\prime}=\ln \left(x^{2}\right)+2$

$$
\begin{aligned}
& x \cdot 2 \cdot(\ln x) \cdot \frac{1}{x} \\
= & x \cdot \frac{1}{x} \cdot 2 \cdot(\ln x)
\end{aligned}
$$

Example
Determine $\frac{d y}{d x}$ if $\quad x \ln y+y \ln x=10$.
Implicit Diff:

$$
\frac{d}{d x}(x \ln y+y \ln x)=\frac{d}{d x}(10)
$$

\uparrow products \uparrow

$$
\begin{gathered}
\left(\frac{d}{d x} x\right) \ln y+x\left(\frac{d}{d x} \ln y\right)+\left(\frac{d}{d x} y\right) \ln x+y\left(\frac{d}{d x} \ln x\right)=0 \\
1 \cdot \ln y+x \cdot \frac{1}{y} \frac{d y}{d x}+\frac{d y}{d x} \ln x+y \cdot \frac{1}{x}=0
\end{gathered}
$$

Isolate $\frac{d y}{d x}$

$$
\frac{x}{y} \frac{d y}{d x}+(\ln x) \frac{d y}{d x}=-\ln y-\frac{y}{x}
$$

Clear
fractions

$$
x y\left(\frac{x}{y} \frac{d y}{d x}+\ln x \frac{d y}{d x}\right)=x y\left(-\ln y-\frac{y}{x}\right)
$$

molt. by

$$
\begin{aligned}
& x y x^{2} \frac{d y}{d x}+x y \ln x \frac{d y}{d x}=-x y \ln y-y^{2} \\
&\left(x^{2}+x y \ln x\right) \frac{d y}{d x}=-x y \ln y-y^{2} \\
& \frac{d y}{d x}=\frac{-x y \ln y-y^{2}}{x^{2}+x y \ln x}
\end{aligned}
$$

Using Properties of Logs
Properties of logarithms can be used to simplify expressions characterized by products, quotients and powers.

Illustrative Example: Evaluate $\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)$
Let's rewrite our function first then take $\frac{d}{d x}$:

$$
\begin{aligned}
\ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right) & =\ln \left(x^{2} \cos (2 x)\right)-\ln \left(\left(x^{2}+x\right)^{1 / 3}\right) \\
& =\ln x^{2}+\ln \cos (2 x)-\ln \left(\left(x^{2}+x\right)^{1 / 3}\right) \\
& =2 \ln x+\ln \cos (2 x)-\frac{1}{3} \ln \left(x^{2}+x\right)
\end{aligned}
$$

March 2, $2017 \quad 14 / 51$

$$
\begin{aligned}
& \frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)=\frac{d}{d x}\left(2 \ln x+\ln \cos (2 x)-\frac{1}{3} \ln \left(x^{2}+x\right)\right) \\
&=2 \cdot \frac{1}{x}+\frac{1}{\cos (2 x)}(-2 \sin (2 x))-\frac{1}{3} \frac{1}{x^{2}+x}(2 x+1) \\
&=\frac{2}{x}-\frac{2 \sin (2 x)}{\cos (2 x)}-\frac{1}{3} \frac{2 x+1}{x^{2}+x} \\
& \text { * } \frac{d}{\sqrt{x}} \cos (2 x)=-\sin (2 x) \cdot 2=-2 \sin (2 x) \quad u=2 x \\
& \quad f(u)=\cos u
\end{aligned}
$$

