March 8 Math 3260 sec. 55 Spring 2018

Section 4.2: Null \& Column Spaces, Linear Transformations

Definition: Let A be an $m \times n$ matrix. The null space of A, denoted ${ }^{1}$ by $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \stackrel{\mathfrak{v}^{\prime n}}{\in} \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} .
$$

We can say that Nul A is the subset of \mathbb{R}^{n} that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.

[^0]Example
Determine Nul A where

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
1 & 2 & 7
\end{array}\right]
$$

The vectors \vec{x} in Nul A sotistr, $A \vec{x}=\overrightarrow{0}$.

$$
\begin{aligned}
& A \stackrel{\text { rret }}{\sim}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2
\end{array}\right] \quad \begin{array}{l}
x_{1}=-3 x_{3} \\
x_{2}=-2 x_{3} \\
x_{3}-\text { free }
\end{array} \\
& \text { so }=\left[\begin{array}{c}
-3 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right], \text { we consay Nul } A=\operatorname{spm}\left\{\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Theorem
For $m \times n$ matrix $A, \operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.
we con show that NuS contemns the zero vector ard is closed under the two operations.

Note, $\vec{A}_{0}=\overrightarrow{0}$ hence $\overrightarrow{0}$ is in NaPA

$$
\text { in } \mathbb{R}^{\prime}
$$

If \vec{u} and \vec{v} are in NolA, then $A_{\vec{u}}=\overrightarrow{0}$ and $A \vec{v}=\overrightarrow{0}$.
So

$$
A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}
$$

$\vec{u}+\vec{v}$ solves the homogeneous equation, so $\vec{u}+\vec{v}$ is in Nil A. Wue A is closed under vector addition.

Similarly, for scala C

$$
A(c \vec{u})=c A \vec{u}=c \stackrel{\rightharpoonup}{0}=\overrightarrow{0}
$$

Hence \mathcal{C}_{U} is in Wal A making it closed under scalar multiplication.

Nub A is therefore a subspace of \mathbb{R}^{n}.

Example
For a given matrix, a spanning set for Null gives an explicit description of this subspace. Find a spanning set for Vul A where

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & -1 \\
1 & 2 & 6 & -5
\end{array}\right]
$$

$$
\text { Using the ref } \quad \begin{aligned}
& A \xrightarrow{\text { ref }} {\left[\begin{array}{llll}
1 & 0 & 2 & -1 \\
0 & 1 & 2 & -2
\end{array}\right] } \\
& x_{1}=-2 x_{3}+x_{4} \\
& x_{2}=-2 x_{3}+2 x_{4} \\
& x_{3}, x_{4}-\text { free }
\end{aligned}
$$

so for \dot{x} in NUR A

$$
\vec{x}=\left[\begin{array}{c}
-2 x_{3}+x_{4} \\
-2 x_{3}+2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3} \\
-2 x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
x_{4} \\
2 x_{4} \\
0 \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]
$$

A explicit description of Nub A is

$$
\text { Nul } A=\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

Column Space

Definition: The column space of an $m \times n$ matrix A, denoted $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If
$A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{CoI} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} .
$$

Note that this corresponds to the set of \mathbf{b} for which linear equations of the form $\mathbf{A x}=\mathbf{b}$ are consistent! That is

$$
\begin{gathered}
\operatorname{Col} A=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\} . \\
\text { in }
\end{gathered}
$$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}.
This follow from the previous theoren that says a span is always a subspace.

Corollary: $\operatorname{Col} A=\mathbb{R}^{m_{\text {if }}}$ and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.

Example
Find a matrix A such that $W=\operatorname{Col} A$ where

$$
W=\left\{\left.\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

we try to write elements of W as linear combinations.

$$
\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right]=\left[\begin{array}{c}
6 a \\
a \\
-7 a
\end{array}\right]+\left[\begin{array}{c}
-b \\
b \\
0
\end{array}\right]=a\left[\begin{array}{c}
6 \\
1 \\
-7
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& =\underbrace{\left[\begin{array}{cc}
6 & -1 \\
1 & 1 \\
-7 & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& A=\left[\begin{array}{cc}
6 & -1 \\
1 & 1 \\
-7 & 0
\end{array}\right]
\end{aligned}
$$

Example

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right]
$$

(a) If $\mathrm{Col} A$ is a subspace of \mathbb{R}^{k}, what is k ?

$$
\text { Columns ave in } \mathbb{R}^{3} \text { so } k=3
$$

(b) If $\mathrm{Nul} A$ is a subspace of \mathbb{R}^{k}, what is k ?
$A \vec{x}$ affined requires \vec{x} in \mathbb{R}^{4}

$$
\begin{aligned}
& A \vec{x}=\overrightarrow{0} \\
& 3 x^{4} k \times 1
\end{aligned}
$$

$$
\text { so } k=4
$$

Example Continued...

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

(c) Is \mathbf{u} in $\operatorname{Nul} A$? Could \mathbf{u} be in $\operatorname{Col} A$?

$$
\begin{aligned}
& \text { Shack: is } A_{\vec{u}}=\overrightarrow{0} \text { ? } \quad A_{h}=\left[\begin{array}{c}
0 \\
-3 \\
3
\end{array}\right] \neq \overrightarrow{0} \\
& \text { No, } \vec{u} \text { is not in Nl. } \\
& \vec{u} \text { is not in Col } A \text {. ColA is a subspace of } \mathbb{R}^{3} \\
& \text { while } \vec{u} \text { is in } \mathbb{R}^{4} .
\end{aligned}
$$

Example Continued...

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right]
$$

(c) Is \mathbf{v} in $\mathrm{Col} A$? Could \mathbf{v} be in Vul A ?
\downarrow
check: Is $A \vec{x}=\vec{v}$ consistent?

$$
\left[\begin{array}{ll}
A & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccccc}
1 & 0 & 9 & 0 & 5 \\
0 & 1 & -5 & 0 & -30 / 17 \\
0 & 0 & 0 & 1 & 1 / 17
\end{array}\right] \quad \begin{aligned}
& A \hat{x}=\vec{V} \text { is } \\
& \text { consistent }
\end{aligned}
$$

Yes, \vec{v} is in Cold
Av ́ isnit defined since \vec{v} is in \mathbb{R}^{3}, so
no, \vec{v} could not be in NolA.

Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in V, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every \mathbf{u} in V and scalar c.

Example
Let $C^{1}(\mathbb{R})$ denote the set of all real valued functions that are differentiable and $C^{0}(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$
D: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R}), \quad D(f)=f^{\prime}
$$

satisfies the two conditions in the previous definition.
From calculus, we know $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$

$$
\begin{aligned}
\text { ie. } D(f+g) & =D(f)+D(g) \\
\text { Also } \quad \frac{d}{d x}(c f(x)) & =c f^{\prime}(x) \text { ie. } \quad D(c f)=c D(f)
\end{aligned}
$$

Characterize the subset of $C^{1}(\mathbb{R})$ such that $D(f)=0$.
$D(f)=0$ repines $f^{\prime}(x)=0$ for all $x . \Rightarrow f(x)=c$ for constant c.

Range and Kernel

Definition: The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.)

Definition: The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors \mathbf{x} in V such that $T(\mathbf{x})=\mathbf{0}$. (The analog of the null space of a matrix.)

Theorem: Given linear transformation $T: V \longrightarrow W$, the range of T is a subspace of W and the kernel of T is a subspace of V.

Example

Consider $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$ defined by

$$
T(f)=\frac{d f}{d x}+\alpha f(x), \quad \alpha \text { a fixed constant. }
$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

$$
\text { To be in the kernel } T(y)=0 \text {. }
$$

This requires

$$
\frac{d y}{d x}+\alpha y=0
$$

Example

Consider $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$ defined by

$$
T(f)=\frac{d f}{d x}+\alpha f(x), \quad \alpha \text { a fixed constant. }
$$

(b) Show that for any scalar $c, y=c e^{-\alpha x}$ is in the kernel of T.

$$
\begin{aligned}
& y \text { is the kernel if } \frac{d y}{d x}+\alpha y=0 . \\
& y=c e^{-\alpha x}, \frac{d y}{d x}=-\alpha c e^{-\alpha x} \\
& \text { so } \frac{d y}{d x}+\alpha y=-\alpha c e^{-\alpha x}+\alpha c e^{-\alpha x}=0
\end{aligned}
$$

[^0]: ${ }^{1}$ Some authors will write $\operatorname{Null}(A) —$ I tend to write two ells.

