March 9 Math 1190 sec. 63 Spring 2017

Section 3.3: Derivatives of Logarithmic Functions

We have the new rules:

$$
\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln a}, \quad \frac{d}{d x} \ln (x)=\frac{1}{x}
$$

with the chain rule

$$
\frac{d}{d x} \log _{a}(f(x))=\frac{f^{\prime}(x)}{f(x) \ln a}, \quad \frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}
$$

Properties of Logs

We'll make use of the properties

$$
\begin{gathered}
\log _{a}(x y)=\log _{a} x+\log _{a} y \\
\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\log _{a}\left(x^{r}\right)=r \log _{a} x
\end{gathered}
$$

for $x, y>0$, and any base $a>0, a \neq 1$.

Using Properties of Logs

Properties of logarithms can be used to simplify expressions characterized by products, quotients and powers.

Illustrative Example: Evaluate $\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)$

First we rewrote the function using properties of logs

$$
\ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)=2 \ln x+\ln \cos (2 x)-\frac{1}{3} \ln \left(x^{2}+x\right)
$$

Then we took the derivative of the sum

$$
\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)=\frac{2}{x}-\frac{2 \sin (2 x)}{\cos (2 x)}-\frac{1}{3} \frac{2 x+1}{x^{2}+x} .
$$

Question

Expand the following completely as a sum/difference/and multiple of logs

$$
\begin{aligned}
& \ln \left(\frac{x^{3}+4}{\sqrt{x} \tan x}\right) \\
& =\ln \left(x^{3}+4\right)-\ln (\sqrt{x} \tan x)
\end{aligned}
$$

(a) $3 \ln x+\ln 4-\ln \sqrt{x}-\ln \tan x \quad=\ln \left(x^{3}+4\right)-(\ln \sqrt{x}+\ln \tan x)$
(b) $\ln \left(x^{3}+4\right)-\ln \sqrt{x}-\ln \tan x$
$=\ln \left(x^{3}+4\right)-\frac{1}{2} \ln x-\ln \tan x$
(c) $\ln \left(x^{3}+4\right)-\frac{1}{2} \ln x+\ln \tan x$
(d)) $\ln \left(x^{3}+4\right)-\frac{1}{2} \ln x-\ln \tan x$

Question

Evaluate the derivative.

$$
\frac{d}{d x} \ln \left(\frac{x^{3}+4}{\sqrt{x} \tan x}\right)
$$

(a) $\frac{3 x^{2}}{x^{2}}+\frac{1}{4}+\frac{1}{2 x}+\frac{\sec ^{2} x}{\tan x}$
(b) $\frac{3 x^{2}}{x^{3}+4}-\frac{1}{2 x}+\frac{\sec ^{2} x}{\tan x}$
(c) $\frac{3 x^{2}}{x^{3}+4}-\frac{1}{2 x}-\frac{\sec ^{2} x}{\tan x}$

Logarithmic Differentiation
We can use properties of logarithms to simplify the process of taking derivatives of expressions that are complicated by
products quotients and powers.

Illustrative Example: Evaluate $\frac{d}{d x}\left(\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\right)$
Let $y=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}$. Instead of finding $\frac{d y}{d x}$ directly, well take the log of both sides and use Implicit differentiation.

$$
\ln y=\ln \left(\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\right)
$$

$$
\begin{aligned}
& =\ln \left(x^{2}(x+1)^{1 / 2}\right)-\ln (\cos (3 x))^{4} \\
& =\ln x^{2}+\ln (x+1)^{1 / 2}-\ln (\cos (3 x))^{4} \\
\ln y & =2 \ln x+\frac{1}{2} \ln (x+1)-4 \ln (\cos (3 x))
\end{aligned}
$$

Now take $\frac{d}{d x}$ of both sides

$$
\begin{aligned}
\frac{d}{d x} \ln y & =\frac{d}{d x}\left(2 \ln x+\frac{1}{2} \ln (x+1)-4 \ln \cos (3 x)\right) \\
\frac{\frac{d y}{d x}}{y} & =2 \frac{1}{x}+\frac{1}{2} \frac{1}{x+1}-4 \frac{-\sin (3 x) \cdot 3}{\cos (3 x)}
\end{aligned}
$$

$$
\frac{\frac{d y}{d x}}{y}=\frac{2}{x}+\frac{1}{2} \frac{1}{x+1}+12 \frac{\sin (3 x)}{\cos (3 x)}
$$

were after $\frac{d y}{d x}$, well solve for it.

$$
\frac{d y}{d x}=y\left(\frac{2}{x}+\frac{1}{2(x+1)}+12 \tan (3 x)\right)
$$

Sub in $y=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}$

$$
\frac{d y}{d x}=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\left(\frac{2}{x}+\frac{1}{2(x+1)}+12 \tan (3 x)\right)
$$

Logarithmic Differentiation

If the differentiable function $y=f(x)$ consists of complicated products, quotients, and powers:
(i) Take the logarithm of both sides, i.e. $\ln (y)=\ln (f(x))$. Then use properties of logs to express $\ln (f(x))$ as a sum/difference of simpler terms.
(ii) Take the derivative of each side, and use the fact that $\frac{d}{d x} \ln (y)=\frac{\frac{d y}{d x}}{y}$.
(iii) Solve for $\frac{d y}{d x}$ (i.e. multiply through by y), and replace y with $f(x)$ to express the derivative explicitly as a function of x.

Example
Find $\frac{d y}{d x}$.

$$
y=x^{\tan x}
$$

This is not an exponential due to the variable base. It's not a power function due to the variable exponent. $I t$ is complicated by a power.

Using log. diff.

$$
\begin{array}{ll}
\ln y=\ln x^{\operatorname{ton} x} & \leftarrow \text { take } \log \\
\ln y=\tan x \ln x & \leftarrow \text { use } \log \text { properties }
\end{array}
$$ \sim this is the product $\tan x$ time $\ln x$

$\frac{d}{d x} \ln y=\frac{d}{d x}(\tan x \ln x) \quad \leftarrow$ take derivative

$$
\begin{aligned}
& \frac{d y}{d x}=\sec ^{2} x \ln x+\tan x \cdot\left(\frac{1}{x}\right) \\
& \frac{d y}{d x}=y\left(\ln x \sec ^{2} x+\frac{\tan x}{x}\right) \leftarrow \frac{\text { solve for }}{d x} \\
& \frac{d y}{d x}=x^{\tan x}\left(\ln x \sec ^{2} x+\frac{\tan x}{x}\right) \quad \operatorname{sun}^{\sin } \quad y=x^{\tan x}
\end{aligned}
$$

Example
Find $\frac{d y}{d x}$.

$$
\begin{aligned}
& y=\frac{x^{3}(4 x-1)^{5}}{\sqrt[4]{x+5}} \\
& \ln y=\ln \left(\frac{x^{3}(4 x-1)^{5}}{(x+5)^{1 / 4}}\right) \\
&=\ln \left(x^{3}(4 x-1)^{5}\right)-\ln (x+5)^{1 / 4} \\
&=\ln x^{3}+\ln (4 x-1)^{5}-\ln (x+5)^{1 / 4} \\
& \ln y=3 \ln x+5 \ln (4 x-1)-\frac{1}{4} \ln (x+5)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} \ln y & =\frac{d}{d x}\left(3 \ln x+5 \ln (4 x-1)-\frac{1}{4} \ln (x+5)\right) \\
\frac{y^{\prime}}{y} & =3 \frac{1}{x}+5 \frac{4}{4 x-1}-\frac{1}{4} \frac{1}{x+5} \\
y^{\prime} & =y\left(\frac{3}{x}+\frac{20}{4 x-1}-\frac{1}{4} \frac{1}{x+5}\right) \\
y^{\prime} & =\frac{x^{3}(4 x-1)}{\sqrt[4]{x+5}}\left(\frac{3}{x}+\frac{20}{4 x-1}-\frac{1}{4} \frac{1}{x+5}\right)
\end{aligned}
$$

Question

Find $\frac{d y}{d x}$.
$y=\sqrt[3]{x^{2} \sin (x)}=\left(x^{2} \sin (x)\right)$

$$
\begin{aligned}
\ln y & =\ln \left(x^{2} \sin (x)\right)^{1 / 3} \\
& =\frac{1}{3} \ln \left(x^{2} \sin (x)\right)
\end{aligned}
$$

(a) $\frac{d y}{d x}=\left[\sqrt[3]{x^{2} \sin (x)}\right]\left(\frac{2}{x}+\cot x\right)$
$=\frac{1}{3}\left(\ln x^{2}+\ln \sin (x)\right)$
(b) $\frac{d y}{d x}=\left[\sqrt[3]{x^{2} \sin (x)}\right]\left(\frac{2}{3 x}+\frac{1}{3} \cot x\right)$
(c) $\frac{d y}{d x}=\left[\sqrt[3]{x^{2} \sin (x)}\right]\left(\frac{1}{x^{2}}+\frac{1}{\sin x}\right)$

Section 4.5: Indeterminate Forms \& L'Hôpital's Rule

 Consider the following three limit statements (all of which are true):(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$
(b) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{(x-3)^{2}}$ doesn't exist

Note: Each of these three limits involve both numerator and denominator going to zero-giving the form $\frac{0}{0}$. In the top two, the limit exists, but the limits are different. In the third, the limit doesn't exist.

Indeterminate Forms

$0 / 0$ is called an Indeterminate form.

Other indeterminate forms we'll encounter include

$$
\frac{ \pm \infty}{ \pm \infty}, \quad \infty-\infty, \quad 0 \cdot \infty, \quad 1^{\infty}, \quad 0^{0}, \quad \text { and } \quad \infty^{0} .
$$

Indeterminate forms are not defined (as numbers)

Question

(1) True or False: $\infty-\infty=0 . \quad \infty-\infty$ is not defined
(2) True or False: The form $\frac{1}{0}$ is indeterminate. $\frac{1}{0}$ is either an infinity
or undefined.
(3) True or False: $\frac{0}{1}=0$.

Theorem: l'Hospital's Rule (part 1)

Suppose f and g are differentiable on an open interval $/$ containing c (except possibly at c), and suppose $g^{\prime}(x) \neq 0$ on I. If

$$
\lim _{x \rightarrow c} f(x)=0 \text { and } \lim _{x \rightarrow c} g(x)=0
$$

then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists (or is ∞ or $-\infty$).

$$
\text { were taking } \lim _{x \rightarrow c} \frac{f(x)}{g(x)} \text { and seeing the form } \frac{0}{0}
$$

Evaluate each limit if possible
(a) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\frac{0}{0}$

Note $\lim _{x \rightarrow 1} \ln x=\ln 1=0$
and $\lim _{x \rightarrow 1}(x-1)=1-1=0$
we have the form for which lilt rule opplies.
applying $\lim _{l^{\prime} 1-1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x}(x-1)}$

$$
=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{1}=\frac{\frac{1}{1}}{1}=1
$$

Theorem: l'Hospital's Rule (part 2)

Suppose f and g are differentiable on an open interval $/$ containing c (except possibly at c), and suppose $g^{\prime}(x) \neq 0$ on I. If

$$
\lim _{x \rightarrow c} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)= \pm \infty
$$

then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists (or is ∞ or $-\infty$).
This says that if $\lim _{x \rightarrow c} \frac{f(x)}{S^{(x)}}$ gives the form $\frac{ \pm 00}{ \pm 00}$
this rule mas help find the limit.

Recall $\lim _{x \rightarrow \infty} e^{-x}=0$
(b) $\lim _{x \rightarrow \infty} x e^{-x}=\infty \cdot 0^{\prime \prime}$

L'H rule only opplies to "O" or " $\frac{ \pm \infty}{ \pm \infty}$ ".
we can write our product as a quotient

$$
x e^{-x}=\frac{e^{-x}}{\frac{1}{x}} \quad \text { or } \quad x e^{-x}=\frac{x}{\frac{1}{e^{-x}}}
$$

Note $\frac{1}{e^{-x}}=e^{x}$ so $\frac{x}{\frac{1}{e^{-x}}}=\frac{x}{e^{x}}$

$$
\lim _{x \rightarrow \infty} x e^{-x}=\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=" \frac{\infty}{\infty} \quad \lim _{x \rightarrow \infty} e^{x}=\infty
$$

we apply ℓ^{\prime} t rule

$$
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} x}{\frac{d}{d x} e^{x}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=\frac{1}{\infty}=0
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(\cos x-1)=\cos 0-1=1-1=0 \\
& \lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}={ }^{\prime \prime}{ }^{\prime \prime} \\
& \lim _{x \rightarrow 0} x^{2}=0 \\
& \text { Apply } \ell^{\prime} H \\
& \text { rule } \\
& =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x} x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{-\sin x}{2 x}=\frac{0}{0} \\
& \text { apply } l^{j H} \\
& =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(-\sin x)}{\frac{d}{d x}(2 x)} \\
& =\lim _{x \rightarrow 0} \frac{-\cos x}{2}=\frac{-\cos 0}{2}=\frac{-1}{2}
\end{aligned}
$$

(c)

Question

