Mar. 9 Math 2254H sec 015H Spring 2015

Section 10.3: Polar Coordinates

Converting between Coordinate Systems The coordinates (x, y) are called rectangular or Cartesian coordinates.

$$
\begin{gathered}
x=r \cos \theta, \quad y=r \sin \theta \\
x^{2}+y^{2}=r^{2}, \quad \tan \theta=\frac{y}{x} \text { for } x \neq 0
\end{gathered}
$$

If $x=0$, then $\theta=\frac{\pi}{2}$ or $\theta=-\frac{\pi}{2}$-of course any co-terminal θ may be used.

Polar Graphs

An analog to $y=f(x)$ is $r=f(\theta)$. Converting to Cartesian may or may not be useful. For example

$$
r=4 \sin \theta \quad \Longleftrightarrow \quad x^{2}+(y-2)^{2}=2^{2}
$$

This obviously gives a circle with radius 2 centered at $(0,2)$.

$$
r=1+\cos \theta \quad \Longleftrightarrow \quad\left(x^{2}+y^{2}\right)^{2}-2 x^{3}-2 x y^{2}-y^{2}=0
$$

It's not particularly obvious what kind of graph this is.

A plot of the cardioid $r=1+\cos \theta$

Producing a Polar Graph

Plot the graph of $y=1-\sin x$ for $0 \leq x \leq 2 \pi$ in Cartesian coordinates.

Producing a Polar Graph
Analyze the graph and consider a few points for the polar equation $r=1-\sin \theta$, and produce a polar plot on the following side.

As $0 \leq \theta \leq \frac{\pi}{2} \quad r$ goes from 1 to the origin
$\frac{\pi}{2} \leq \theta \leq \pi \quad r$ goes from 0 bach to 1 $\pi \leq \theta \leq \frac{3 \pi}{2} \quad r$ goes form 1 to 2
$\frac{3 \pi}{2} \leq \theta \leq 2 \pi \quad r$ deculases from 2 to 1 .

Limaçons: $r=a \pm b \cos \theta$ or $r=a \pm b \sin \theta$

$$
r=a+b \cos \theta
$$

Limaçons: $r=a \pm b \cos \theta$ or $r=a \pm b \sin \theta$

March 9, 2015

Roses $r=\operatorname{acos}(n \theta)$ or $r=\operatorname{asin}(n \theta), n=2,3,4 \ldots$

The polar graph of the curve

$$
r=a \cos (n \theta) \quad \text { or } \quad r=a \sin (n \theta) \quad \text { for positive integer } n .
$$

is a/an $\begin{cases}n \text { petal rose, } & \text { if } n \text { is odd } \\ 2 n \text { petal rose, } & \text { if } n \text { is even }\end{cases}$

Roses $r=a \cos (n \theta)$ or $r=a \sin (n \theta), n=2,3,4 \ldots$

March 9, 2015

Example: Producing a 4 Petal Rose

Plot the graph of $y=\sin (2 x)$ for $0 \leq x \leq 2 \pi$ in Cartesian coordinates.

Example: Producing a 4 Petal Rose
Analyze the Caresian graph and find a few points on the curve. Use this information to produce a polar plot of $r=\sin (2 \theta)$ on the next slide.

Major features occur in intenvels of length $\frac{\pi}{4}$
when $r<0$, recall that points are reflected through the origin.
ie. for $\frac{\pi}{2}<\theta<\frac{3 \pi}{4}$ (quad II) the graph is in quad IV.

Section 5.4: Areas in Polar Coordinates

Motivating Example: Suppose we wish to find the area inside the circle $r=1$ and outside of the cardioid $r=1-\sin \theta$.

Area of a Sector of a Circle

Area Sector

$$
\begin{aligned}
A & =\pi r^{2} \cdot\left(\frac{\theta}{2 \pi}\right) \\
& =\frac{1}{2} r^{2} \theta
\end{aligned}
$$

Figure: Recall the formula for the area of a sector of a circle of radius r and central angle θ.

Area Bounded by a Polar Graph $r=f(\theta)$ for

 $\alpha \leq \theta \leq \beta$

Figure: We slice the region into small wedges (a.k.a. form a partition of $[\alpha, \beta]$).

Area Bounded by a Polar Graph $r=f(\theta)$ for $\alpha \leq \theta \leq \beta$

Figure: The region with a partition.

Area Bounded by a Polar Graph $r=f(\theta)$ for $\alpha \leq \theta \leq \beta$

Area Bounded by a Polar Graph $r=f(\theta)$ for

$\alpha \leq \theta \leq \beta$
We add the areas of the individual wedges. The total area

$$
A \approx \frac{1}{2}\left[f\left(\theta_{1}^{*}\right)\right]^{2} \Delta \theta+\cdots+\frac{1}{2}\left[f\left(\theta_{n}^{*}\right)\right]^{2} \Delta \theta=\sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta .
$$

Take the limit as the number of wedges goes to ∞-that is, as $\Delta \theta$ becomes infinitesimal-to get

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta
$$

We can restate the formula as

$$
A=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta
$$

Examples
Find the area of the region bounded by the curve $r=\sin \theta$ for $0 \leq \theta \leq \frac{\pi}{4}$.

$$
r=\sin \theta
$$

$$
\begin{aligned}
A & =\int_{0}^{\pi / 4} \frac{1}{2} r^{2} d \theta \\
& =\int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2} \theta d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 4}\left(\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{1}{2}\left(\frac{1}{2} \theta-\frac{1}{2} \cdot \frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\pi / 4} \\
& =\frac{1}{2}\left(\frac{1}{2} \cdot \frac{\pi}{4}-\frac{1}{4} \sin \frac{\pi}{2}-0\right) \\
& =\frac{\pi}{16}-\frac{1}{8}
\end{aligned}
$$

