Mar. 9 Math 2254H sec 015H Spring 2015

Section 10.3: Polar Coordinates
Converting between Coordinate Systems

The coordinates (x, y) are called rectangular or Cartesian
coordinates.

X =rcosf, y=rsinf

X2 +y2=r? tanez% for x £ 0

If x =0, then § = 7 or 6 = —5—of course any co-terminal & may be
used.
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Polar Graphs

An analog to y = f(x) is r = f(6). Converting to Cartesian may or may

not be useful. For example

r=4sinf < x>+ (y-2)2=22

This obviously gives a circle with radius 2 centered at (0, 2).

r=1+cosf — (xX24+y?®)2-2x3—-2xy2—-y?2=0

It's not particularly obvious what kind of graph this is.
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A plot of the cardioid r =1 + cos ¢

r=1+coz 0
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Producing a Polar Graph
Plot the graph of y =1 — sin x for 0 < x < 27 in Cartesian
coordinates.
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Producing a Polar Graph

Analyze the graph and consider a few points for the polar equation
r =1 —sin#, and produce a polar plot on the following side.
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Limagons: r=a+ bcosforr=a+ bsind
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Limagons: r=a+ bcosforr=a+ bsind
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Roses r = acos(nf) or r = asin(nd), n=2,3,4...

The polar graph of the curve
r=acos(ng) or r=asin(nd) for positive integer n.

n petal rose, if nis odd

is a/an v
2n petal rose, if nis even
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Roses r = acos(nf) or r = asin(nd), n=2,3,4...
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Example: Producing a 4 Petal Rose
Plot the graph of y = sin(2x) for 0 < x < 27 in Cartesian
coordinates.
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Example: Producing a 4 Petal Rose

Analyze the Caresian graph and find a few points on the curve. Use

this information to produce a polar plot of r = sin(260) on the next slide.
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Section 5.4: Areas in Polar Coordinates
Motivating Example: Suppose we wish to find the area inside the
circle r = 1 and outside of the cardioid r = 1 — sin 6.
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Area of a Sector of a Circle

Figure: Recall the formula for the area of a sector of a circle of radius r and
central angle 6.
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Area Bounded by a Polar Graph r = f(#) for
a<0<p

g= 56

= _F{E)

Figure: We slice the region into small wedges (a.k.a. form a partition of
[a, B]).
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Area Bounded by a Polar Graph r = f(#) for
a<0<p

&= 48

Figure: The region with a partition.
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Area Bounded by a Polar Graph r = f(#) for
a<0<p

g= 8
FED
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Area Bounded by a Polar Graph r = f(#) for
a<0<f
We add the areas of the individual wedges. The total area

n

Ar %[f(&;‘)]zAH ot %[f(e;*,)]QM = ; %[f(97 IP00.

Take the limit as the number of wedges goes to co—that is, as Ad
becomes infinitesimal—to get

n

A= lim %[f(e;")]ZAH - % / "Fo)2 do

i=1

We can restate the formula as

A=

B8
/ r? do

N —
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Examples
Find the area of the region bounded by the curve r = sin g for

0<h<T.
r= S0 !
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