March 9 Math 3260 sec. 55 Spring 2020

Section 4.3: Linearly Independent Sets and Bases

Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {by,...,bp} in V is a basis of H provided

() Bis linearly independent, and
(i) H=Span(B).

We can think of a basis as a minimal spanning set. All of the
information needed to construct vectors in H is contained in the basis,
and none of this information is repeated.

March 9, 2020 1/32



Standard Basis in R”

The columns of the n x nidentity matrix provide an obvious basis for
R". This is called the standard basis for R". For example, the

standard bases in R? and R3 are
0
,1 0 respectively.
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Some Other Vector Spaces

> {1,t,12, 3} is the standard basis for P3

> Theset {1,t,...,t"} is called the standard basis for Pp,.
>Theset{[é 8],[8 é},[? 8],[8 ?]}isabasisfor
M2><2_
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Example
Define a standard basis for M?*3,
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Prelude to a Spanning Set Theorem

Example: Let v4, Vo, V3 be vectors in a vector space V, and suppose
that

(1) H =Span{vy,vs2,v3} and
(2) V3 =Vq — 2Vs.

Show that H =Span{vy,va}. L \Dk
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Theorem:

Let S = {vy,Vvo,...,Vp} be a setin a vector space V and H =Span(S).
(a.) If one of the vectors in S, say v is a linear combination of the
other vectors in S, then the subset of S obtained by eliminating v still
spans H.

(b) If H # {0}, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive
at a basis.

March 9, 2020 9/32



Column Space

Find a basis for the column space matrix B that is in reduced row
echelon form
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Using the rref

Theorem: If A=[a;---a,] and B = [by - - - b,] are row equivalent
matrices, then Nul A = Nul B. That is, the equations

Ax=0 and Bx=0

have the same solution set.

Note what this means! It means that {a+,...,a,} and {b4,...,b,}
have exactly the same linear dependence relationships!
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Theorem:

The pivot columns of a matrix A form a basis of Col A.

Caveat: This means we can use row reduction to identify a basis, but
the vectors we obtain will be from the original matrix A. (As illustrated
in the following example.)
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Find a basis for Col A’
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Find bases for Nul A and Col A

Lue Qo OSe M\L (—‘\«Q’&- L&,f )9““\)\"
A‘[2151]W‘j§< K_O\ﬂs

?\u&r Colwmns G A ard C. D bac\s e

« {1 11)-

Fbr\ ’k»\n_ r\u—Q&SﬁDau) CQ(\S\&O«-\ A?:b .
Crom the cre b

CoQ A

X, = -3 X3 + & Xy
X2 = X3 -~ SX‘T

X, Xy VY (-\’\-’v\

March 9, 2020 15/32



March 9, 2020

16/32



Example

Let H= {pin P, | p(—1) = 0}. Find a basis for H.
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