March 9 Math 3260 sec. 55 Spring 2020

Section 4.3: Linearly Independent Sets and Bases

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis of H provided
(i) \mathcal{B} is linearly independent, and
(ii) $H=\operatorname{Span}(\mathcal{B})$.

We can think of a basis as a minimal spanning set. All of the information needed to construct vectors in H is contained in the basis, and none of this information is repeated.

Standard Basis in \mathbb{R}^{n}

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^{n}. This is called the standard basis for \mathbb{R}^{n}. For example, the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3} are

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \quad \text { and } \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \quad \text { respectively. }
$$

Some Other Vector Spaces

- $\left\{1, t, t^{2}, t^{3}\right\}$ is the standard basis for \mathbb{P}_{3}
- The set $\left\{1, t, \ldots, t^{n}\right\}$ is called the standard basis for \mathbb{P}_{n}.
- The set $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis for $M^{2 \times 2}$ 。
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+d\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

Example
Define a standard basis for $M^{2 \times 3}$.
A typical vector looks like $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$

Take the set

$$
\begin{aligned}
\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\right. & {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], } \\
& {\left.\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} }
\end{aligned}
$$

Prelude to a Spanning Set Theorem
Example: Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be vectors in a vector space V, and suppose that
(1) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and
(2) $\mathbf{v}_{3}=\mathbf{v}_{1}-2 \mathbf{v}_{2}$.

Show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
Let \vec{u} be in H, so \vec{u} is in $\operatorname{Spon}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
Then $\vec{u}=C_{1} \vec{v}_{1}+C_{2} \vec{v}_{2}+C_{3} \vec{v}_{3}$ for some
scalars c_{1}, c_{2}, c_{3}.

$$
\vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3}\left(\vec{v}_{1}-2 \vec{v}_{2}\right)
$$

$$
=\left(c_{1}+c_{3}\right) \vec{V}_{1}+\left(c_{2}-2 c_{3}\right) \vec{V}_{2}
$$

So \vec{u} is in $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$.
Since this holds for any vector in $H, \quad H=\operatorname{spon}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$.

Theorem:

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a set in a vector space V and $H=\operatorname{Span}(S)$.
(a.) If one of the vectors in S, say \mathbf{v}_{k} is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_{k} still spans H.
(b) If $H \neq\{\mathbf{0}\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive at a basis.

Column Space
Find a basis for the column space matrix B that is in reduced row echelon form

$$
B=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
\vec{b} & \vec{b}_{2} & \vec{b}_{3} & \vec{b}_{4} & \vec{b}_{5}
\end{array}\right]
$$

The pivot columns are 1,3 , and 5 .
Note $\vec{b}_{2}=4 \vec{b}_{1}$, and $\vec{b}_{4}=2 \vec{b}_{1}-1 \vec{b}_{3}$

$$
\text { Col } B=\operatorname{Spon}\left\{\vec{b}_{1} ; \vec{b}_{2}, \vec{b}_{3} ; \vec{b}_{4}, \vec{b}_{5}\right\}
$$

by definition.

Our theorem says we con exclude \vec{b}_{4} and \vec{b}_{2} to get a basis.

A basis for $\operatorname{col} B$ is

$$
\left\{\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}\right\}
$$

Using the rref

Theorem: If $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$ and $B=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]$ are row equivalent matrices, then Nul $A=\mathrm{Nul} B$. That is, the equations

$$
A \mathbf{x}=\mathbf{0} \text { and } B \mathbf{x}=\mathbf{0}
$$

have the same solution set.

Note what this means! It means that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ and $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ have exactly the same linear dependence relationships!

Theorem:

The pivot columns of a matrix A form a basis of $\operatorname{Col} A$.

Caveat: This means we can use row reduction to identify a basis, but the vectors we obtain will be from the original matrix A. (As illustrated in the following example.)

Find a basis for Col A^{1}

$$
\begin{aligned}
A= & {\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & -1 \\
3 & 12 & 1 & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right] . \quad \begin{array}{l}
\text { We need to identr } f y \text { the } \\
\text { pivot columns. }
\end{array} } \\
& \operatorname{rref} A=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
\text { Columns } 1, \\
3 \text {, ard } 5 \text { air st columns. }
\end{array}
\end{aligned}
$$

A basis for Col A is

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
2 \\
5
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
2 \\
8
\end{array}\right]\right\}
$$

${ }^{1}$ Use a calculator to do the row reduction.

Find bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$
We can use the ret for both.

$$
A=\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
2 & 1 & 5 & 1
\end{array}\right] \underset{\text { ret }}{\rightarrow}\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 1 & -1 & 5
\end{array}\right]
$$

Pivot columns are 1 and 2. A basis for $\operatorname{Col} A$ is $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.

For the noel space, consida $A \vec{x}=\overrightarrow{0}$.
From the reef

$$
\begin{aligned}
& x_{1}=-3 x_{3}+2 x_{4} \\
& x_{2}=x_{3}-5 x_{4} \\
& x_{3}, x_{4} \text { are free }
\end{aligned}
$$

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-3 x_{3}+2 x_{4} \\
x_{3}-5 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-5 \\
0 \\
1
\end{array}\right]
$$

A basis for NolA is

$$
\left\{\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{c}
2 \\
-5 \\
0 \\
1
\end{array}\right]\right\}
$$

Example

Let $H=\left\{\mathbf{p}\right.$ in $\left.\mathbb{P}_{2} \mid \mathbf{p}(-1)=0\right\}$. Find a basis for H.
A vector in H looks like

$$
\vec{p}(t)=p_{0}+p_{1} t+p_{2} t^{2} \text { such that }
$$

$$
\vec{p}(-1)=p_{0}+p_{1}(-1)+p_{2}(-1)^{2}=0
$$

$$
p_{0}-p_{1}+p_{2}=0
$$

we require $p_{0}=p_{1}-p_{2}$
with p_{1}, p_{2} - free
Tale the example $p_{1}=1, p_{2}=0$. Then
$p_{0}=1$ and $\vec{p}(t)=1-1 t+0 t^{2}=1-t$
Luting $p_{1}=0$ and $p_{2}=1$, we set $p_{0}=-1$
so $\vec{p}(t)=-1+0 t+1 t^{2}=-1+t^{2}$
A basis for H is $\left\{1-t,-1+t^{2}\right\}$.

