March 11 Math 2306 sec. 60 Spring 2019

Section 10: Variation of Parameters

For the second order equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation.

Variation of parameters provides a particular solution in the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

$$
\frac{d y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where

$$
u_{1}=\int \frac{-g(x) y_{2}(x)}{W} d x \quad \text { and } \quad u_{2}=\int \frac{g(x) y_{1}(x)}{W} d x
$$

and $W=W\left(y_{1}, y_{2}\right)(x)$ is the Wronskian of the solutions of the associated homogeneous equation.

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$.
Solve the homogeneous equation $y^{\prime \prime}+y=0$.
Characteristic equation $\quad m^{2}+1=0$

$$
\begin{aligned}
& m^{2}=-1 \Rightarrow m= \pm \sqrt{-1}= \pm i \\
& \alpha=0, \beta=1
\end{aligned}
$$

The ODE is in standard form, so $g(x)=\tan x$ we need the Wronskion

$$
w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x-\left(-\sin ^{2} x\right)=1
$$

Using Variation of parameters

$$
\begin{gathered}
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \text { where } \\
u_{1}=\int-\frac{-g(x) y_{2}(x)}{w} d x=\int \frac{-\tan x \sin x}{1} d x
\end{gathered}
$$

and

$$
u_{2}=\int \frac{g(x) y_{1}(x)}{w} d x=\int \frac{\tan x \cos x}{1} d x
$$

Completing h_{2}

$$
u_{2}=\int \tan x \cos x d x=\int \sin x d x=-\cos x
$$

$$
\begin{aligned}
u_{1} & =\int-\tan x \sin x d x=\int-\frac{\sin ^{2} x}{\cos x} d x \\
& =-\int \frac{\left(1-\cos ^{2} x\right)}{\cos x} d x=\int(\cos x-\sec x) d x \\
& =\sin x-\ln |\sec x+\tan x| \\
y_{p} & =u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \\
& =(\sin x-\ln |\sec x+\tan x|) \cos x-\cos x \sin x \\
& =\sin x \cos x-\cos x \ln |\sec x+\tan x|-\cos x \sin x
\end{aligned}
$$

$$
y_{p}=-\cos x \ln |\sec x+\tan x|
$$

The general solution is

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

Example:
Solve the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x
$$

given that $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$ is the complementary solution.
From the given y_{c}, we hove $y_{1}=x^{2}, y_{2}=x^{-2}$.
we need the ODE in standard form to identify $g(x)$.

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=\frac{\ln x}{x^{2}} \quad g(x)=\frac{\ln x}{x^{2}}
$$

The wronstion

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
x^{2} & x^{-2} \\
2 x & -2 x^{-3}
\end{array}\right|=-2 x^{-1}-2 x^{-1}=-4 x^{-1}
$$

Then $y_{p}=u_{1} y_{1}+x_{2} y_{2}$ where

$$
\begin{array}{rlr}
u_{1} & =\int \frac{-g(x) y_{2}(x)}{w} d x \quad u_{2}=\int \frac{g(x) y_{1}(x)}{w} d x \\
& =\int-\frac{\left(\frac{\ln x}{x^{2}}\right) x^{-2}}{-4 x^{-1}} d x \quad u_{2}=\int \frac{\left(\frac{\ln x}{x^{2}}\right) x^{2}}{-4 x^{-1}} d x \\
u_{1} & =\int \frac{1}{4}(\ln x) x^{-4} \cdot x d x=\int \frac{1}{4}(\ln x) x^{-3} d x
\end{array}
$$

Integrate by parts with $u=\ln x, d v=x^{-3} d x$

$$
d u=\frac{1}{x} d x, v=\frac{x^{-2}}{-2}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left(-\frac{1}{2} x^{-2} \ln x-\frac{1}{4} x^{-2}\right)=-\frac{1}{8} x^{-2} \ln x-\frac{1}{16} x^{-2} \\
& u_{2}=\int \frac{-1}{4}(\ln x) x^{-2} \cdot x^{2} x d x=\int \frac{-1}{4} x \ln x d x
\end{aligned}
$$

Integrate by pants with $u=\ln x, d v=x d x$

$$
d u=\frac{1}{x} d x, \quad v=\frac{x^{2}}{2}
$$

$$
=\frac{-1}{4}\left(\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}\right)=\frac{-1}{8} x^{2} \ln x+\frac{1}{16} x^{2}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(\frac{-1}{8} x^{-2} \ln x-\frac{1}{16} x^{-2}\right) x^{2}+\left(\frac{-1}{8} x^{2} \ln x+\frac{1}{16} x^{2}\right) x^{-2} \\
& =\frac{-1}{8} \ln x-\frac{1}{16}-\frac{1}{8} \ln x+\frac{1}{16} \\
& =\frac{-1}{4} \ln x
\end{aligned}
$$

The general solution is

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x
$$

Let's verify that ow y_{p} is correct. Sub it into

$$
\begin{gathered}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x \\
y_{p}=\frac{-1}{4} \ln x, \quad y_{p}^{\prime}=\frac{-1}{4} \frac{1}{x} \quad y_{p}^{\prime \prime}=\frac{1}{4}\left(\frac{1}{x^{2}}\right) \\
x^{2} y_{p}^{\prime \prime}+x y_{p}^{\prime}-4 y_{p}= \\
x^{2}\left(\frac{1}{4} \frac{1}{x^{2}}\right)+x\left(\frac{-1}{4} \frac{1}{x}\right)-4\left(\frac{-1}{4} \ln x\right)= \\
\frac{1}{4}-\frac{1}{4}+\ln x=\ln x
\end{gathered}
$$

$$
\ln x=\ln x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x, \quad y(1)=-1, \quad y^{\prime}(1)=0
$$

The genera solution is $y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x$
Apply the I.C.

$$
y^{\prime}=2 c_{1} x-2 c_{2} x^{-3}-\frac{1}{4 x}
$$

$$
\begin{gathered}
y(1)=c_{1}\left(1^{2}\right)+c_{2}\left(1^{-2}\right)-\frac{1}{4} \ln 1=-1 \\
c_{1}+c_{2}=-1 \\
y^{\prime}(1)=2 c_{1}(1)-2 c_{2}\left(1^{-3}\right)-\frac{1}{4(1)}=0 \\
2 c_{1}-2 c_{2}=\frac{1}{4}
\end{gathered}
$$

Solving the system $2 c_{1}+2 c_{2}=-2$

$$
\frac{2 c_{1}-2 c_{2}=\frac{1}{4}}{4 c_{1}=-\frac{7}{4}} \quad c_{1}=\frac{-7}{16}
$$

subtract $4 c_{2}=\frac{-9}{4} \quad c_{2}=\frac{-9}{16}$

The solution to the IJP is

$$
y=\frac{-7}{16} x^{2}-\frac{9}{16} x^{-2}-\frac{1}{4} \ln x
$$

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.
Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law

Newton's Second Law: $F=$ ma Force $=$ mass times acceleration

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ Force exerted by the spring is proportional to displacement
The force imparted by the spring opposes the direction of motion.

$$
\begin{array}{r}
m x^{\prime \prime}+k x=0 \Rightarrow x^{\prime \prime}+\frac{k}{m} x=0 \\
m \frac{d^{2} x}{d t^{2}}=-k x \Longrightarrow x^{\prime \prime}+\omega^{2} x=0 \text { where } \omega=\sqrt{\frac{k}{m}}
\end{array}
$$

Convention We'll Use: Up will be positive ($x>0$), and down will be negative $(x<0)$. This orientation is arbitrary and follows the convention in Trench.

