March 13 MATH 1112 sec. 54 Spring 2019

Section 6.5: Trigonometric Functions of a Real Variable and Their Graphs

Let $f(x) = \sin x$ and $g(x) = \cos x$. Then

- ▶ Both f and g are periodic with fundamental period 2π .
- ▶ The domain of both f and g is $(-\infty, \infty)$.
- ▶ The range of both f and g is [-1, 1]; they have amplitude 1.
- f is an odd function, i.e. $f(-x) = \sin(-x) = -\sin x = -f(x)$.
- g is an even function, i.e. $g(-x) = \cos(-x) = \cos x = g(x)$.
- ▶ Both f and g are continuous on their entire domain $(-\infty, \infty)$.
- ▶ The zeros of f are integer multiples of π , i.e. $f(n\pi) = 0$ for $n = 0, \pm 1, \pm 2, ...$
- ► The zeros of g are odd integer multiples of $\pi/2$, $g(\frac{m\pi}{2}) = 0$ for $m = \pm 1, \pm 3, \dots$

1/33

Plot of $f(x) = \cos x$ and $g(x) = \sin x$ Together

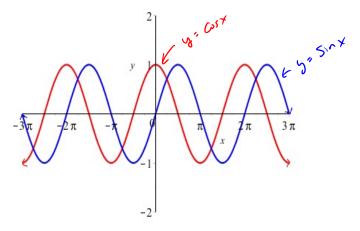


Figure: Note that the cofunction property $cos(x) = sin(\pi/2 - x)$ can be seen in the graphs.

The Tangent

The function $\tan s = \frac{\sin s}{\cos s}$. Recall that

$$\cos s = 0$$
 whenever $s = \frac{m\pi}{2}$ for $m = \pm 1, \pm 3, \pm 5, \dots$

When $\cos s = 0$, $\sin s$ is either 1 or -1. Hence

Domain: The domain of the tangent function is all real number **except** odd multiples of $\pi/2$. We can write this as

$$\left\{ s \mid s \neq \frac{\pi}{2} + k\pi, \ k = 0, \pm 1, \pm 2, \dots \right\}$$

Moreover, the graph of the tangent function has vertical asymptotes at each odd multiple of $\pi/2$.

The Tangent

Range: The range of the tangent function is all real numbers.

Symmetry: The function $f(s) = \tan s$ is odd. That is

$$f(-s) = \tan(-s) = -\tan s = -f(s).$$

Perodicity: The tangent function is periodic with fundamental period π . That is

 $tan(s + \pi) = tan s$ for all s in the domain.

Note: The period of the tangent function is π . This is different from the period of the sine and cosine.

March 11, 2019 4 / 33

Minute Exercise

We have the *nice* sine and cosine values

s	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin s	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1

and

S	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos s	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	<u>1</u>	0

Take a moment and fill in the table of tangent values (as possible) using $\tan s = \sin s / \cos s$.

S	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
tan s	0	13/3	1	13	unde

The Tangent

A few key tangent values:

s	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
tan s	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

And due to symmetry

s	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0
tan <i>s</i>	undef.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Here is an applet to plot two periods of the function $f(s) = \tan s$.

GeoGebra Graph Applet: Sine, Cosine, and Tangent

Basic Plot $f(x) = \tan x$

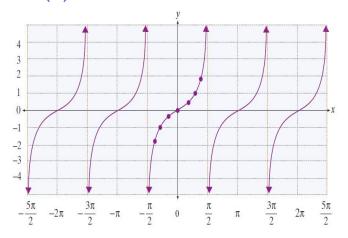


Figure: Plot of several periods of $f(x) = \tan x$. Note that the interval between adjacent asymptotes is the period π .

Cotangent: Using the Cofunction ID and Symmetry

$$\cot s = \tan\left(\frac{\pi}{2} - s\right) = \tan\left(-\left(s - \frac{\pi}{2}\right)\right) = -\tan\left(s - \frac{\pi}{2}\right).$$

So the graph of $f(s) = \cot s$ is the graph of $g(s) = \tan s$ under a horizontal shift $\pi/2$ units to the right followed by a reflection in the s-axis.

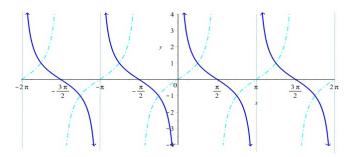


Figure: Plot of $f(x) = \cot x$. Note that the lines $x = n\pi$ for $n = 0, \pm 1, \pm 2, ...$ are vertical asymptotes to the graph. The dashed curve is $y = \tan x$.

Cosecant and Secant

Domains: Since $sin(n\pi) = 0$ for integers n,

Domain($\csc s$) = { $s \mid s \neq n\pi$, for integers n}.

Since $\cos\left(\frac{\pi}{2} + n\pi\right) = 0$ for integers n, the domain of $\sec s$ is

$$\mathbf{Domain}(\sec s) \ = \ \left\{ s \ \middle| \ s \neq \frac{\pi}{2} + n\pi, \ \text{for integers} \ n \right\}.$$

Ranges: Note that

$$|\csc s| = \frac{1}{|\sin s|} \ge 1$$
 and $|\sec s| = \frac{1}{|\cos s|} \ge 1$

so the range of both csc s and sec s is

$$(-\infty,-1]\cup[1,\infty).$$

Cosecant: Using $\csc s = \frac{1}{\sin s}$

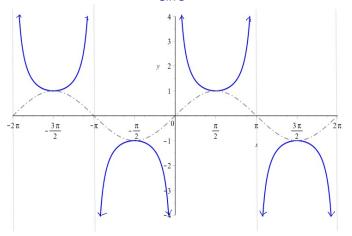


Figure: Two periods of $f(s) = \csc s$. The dashed curve is $y = \sin s$. Note the asymptotes $s = n\pi$ for integers n where $\sin s$ takes its zeros. The curves meet at the relative extrema and have the same period 2π .

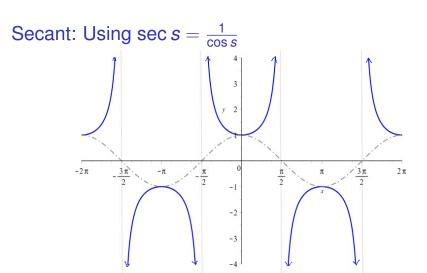


Figure: Two periods of $f(s) = \sec s$. The dashed curve is $y = \cos s$. Note the asymptotes $s = \pi/2 + n\pi$ for integers n where $\cos s$ takes its zeros. The curves meet at the relative extrema and have the same period 2π .

Minute Exercise

We have the symmetry for sine, cosine, and tangent: sin(-x) = -sin x cos(-x) = cos x, tan(-x) = -tan x.

We have the reciprocal relationships

$$\csc x = \frac{1}{\sin x}$$
 $\sec x = \frac{1}{\cos x}$ $\cot x = \frac{1}{\tan x}$.

From these, take a moment and deduce the symmetry (even or odd) for the remaining three functions.

- $ightharpoonup \csc x$ is $\frac{\text{odd}}{\text{odd}}$ so $\csc(-x) = \frac{-\cos(x)}{\cos(x)}$
- ▶ $\sec x$ is even so $\sec(-x) = \frac{\sec(x)}{\sec(x)}$
- ightharpoonup cot x is <u>old</u> so cot(-x) = cot(x)

