March 13 MATH 1112 sec. 54 Spring 2019

Section 6.5: Trigonometric Functions of a Real Variable and Their Graphs

Let $f(x)=\sin x$ and $g(x)=\cos x$. Then

- Both f and g are periodic with fundamental period 2π.
- The domain of both f and g is $(-\infty, \infty)$.
- The range of both f and g is $[-1,1]$; they have amplitude 1 .
- f is an odd function, i.e. $f(-x)=\sin (-x)=-\sin x=-f(x)$.
- g is an even function, i.e. $g(-x)=\cos (-x)=\cos x=g(x)$.
- Both f and g are continuous on their entire domain $(-\infty, \infty)$.
- The zeros of f are integer multiples of π, i.e. $f(n \pi)=0$ for $n=0, \pm 1, \pm 2, \ldots$
- The zeros of g are odd integer multiples of $\pi / 2, g\left(\frac{m \pi}{2}\right) \equiv 0$ for $m= \pm 1, \pm 3, \ldots$

Plot of $f(x)=\cos x$ and $g(x)=\sin x$ Together

Figure: Note that the cofunction property $\cos (x)=\sin (\pi / 2-x)$ can be seen in the graphs.

The Tangent

The function $\tan s=\frac{\sin s}{\cos s}$. Recall that

$$
\cos s=0 \quad \text { whenever } \quad s=\frac{m \pi}{2} \text { for } m= \pm 1, \pm 3, \pm 5, \ldots
$$

When $\cos s=0, \sin s$ is either 1 or -1 . Hence
Domain: The domain of the tangent function is all real number except odd multiples of $\pi / 2$. We can write this as

$$
\left\{s \left\lvert\, s \neq \frac{\pi}{2}+k \pi\right., k=0, \pm 1, \pm 2, \ldots\right\}
$$

Moreover, the graph of the tangent function has vertical asymptotes at each odd multiple of $\pi / 2$.

The Tangent

Range: The range of the tangent function is all real numbers.

Symmetry: The function $f(s)=\tan s$ is odd. That is

$$
f(-s)=\tan (-s)=-\tan s=-f(s) .
$$

Perodicity: The tangent function is periodic with fundamental period π. That is

$$
\tan (s+\pi)=\tan s \quad \text { for all } s \text { in the domain. }
$$

Note: The period of the tangent function is π. This is different from the period of the sine and cosine.

Minute Exercise

We have the nice sine and cosine values

s	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin s$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1

and

\boldsymbol{S}	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \boldsymbol{s}$	$\mathbf{1}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0

Take a moment and fill in the table of tangent values (as possible) using $\tan s=\sin s / \cos s$.

s	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\tan s$	0	$\sqrt{3} / 3$	1	$\sqrt{3}$	undef

The Tangent

A few key tangent values:

s	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\tan s$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

And due to symmetry

s	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0
$\tan s$	undef.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Here is an applet to plot two periods of the function $f(s)=\tan s$.

. GeoGebra Graph Applet: Sine, Cosine, and Tangent

Basic Plot $f(x)=\tan x$

Figure: Plot of several periods of $f(x)=\tan x$. Note that the interval between adjacent asymptotes is the period π.

Cotangent: Using the Cofunction ID and Symmetry

$$
\cot s=\tan \left(\frac{\pi}{2}-s\right)=\tan \left(-\left(s-\frac{\pi}{2}\right)\right)=-\tan \left(s-\frac{\pi}{2}\right) .
$$

So the graph of $f(s)=\cot s$ is the graph of $g(s)=$ tan s under a horizontal shift $\pi / 2$ units to the right followed by a reflection in the s-axis.

Figure: Plot of $f(x)=\cot x$. Note that the lines $x=n \pi$ for $n=0, \pm 1, \pm 2, \ldots$ are vertical asymptotes to the graph. The dashed curve is $y=\tan x$.

Cosecant and Secant

Domains: Since $\sin (n \pi)=0$ for integers n,
Domain $(\csc s)=\{s \mid s \neq n \pi$, for integers $n\}$.
Since $\cos \left(\frac{\pi}{2}+n \pi\right)=0$ for integers n, the domain of $\sec s$ is

$$
\text { Domain }(\sec s)=\left\{s \left\lvert\, s \neq \frac{\pi}{2}+n \pi\right., \text { for integers } n\right\} .
$$

Ranges: Note that Recall $|\sin s| \leq 1$ and $|\cos s| \leq 1$

$$
|\csc s|=\frac{1}{|\sin s|} \geq 1 \quad \text { and } \quad|\sec s|=\frac{1}{|\cos s|} \geq 1
$$

so the range of both $\csc s$ and $\sec s$ is

$$
(-\infty,-1] \cup[1, \infty) .
$$

Cosecant: Using $\csc s=\frac{1}{\sin s}$

Figure: Two periods of $f(s)=\csc s$. The dashed curve is $y=\sin s$. Note the asymptotes $s=n \pi$ for integers n where sin s takes its zeros. The curves meet at the relative extrema and have the same period 2π.

Secant: Using $\sec s=\frac{1}{\cos s}$

Figure: Two periods of $f(s)=\sec s$. The dashed curve is $y=\cos s$. Note the asymptotes $s=\pi / 2+n \pi$ for integers n where cos s takes its zeros. The curves meet at the relative extrema and have the same period 2π.

Minute Exercise

We have the symmetry for sine, cosine, and tangent: $\sin (-x)=-\sin x \cos (-x)=\cos x, \tan (-x)=-\tan x$.

We have the reciprocal relationships

$$
\csc x=\frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \cot x=\frac{1}{\tan x} .
$$

From these, take a moment and deduce the symmetry (even or odd) for the remaining three functions.

- $\csc x$ is odd $\operatorname{so} \csc (-x)=-\csc (x)$
- $\sec x$ is even $\operatorname{so} \sec (-x)=\sec (x)$
- $\cot x$ is odd so $\cot (-x)=-\cot (x)$

